

FlexPDE
User Guide

Version 5.0

5/28/05

Copyright ©2005 PDE Solutions Inc.

© 2005 PDE Solutions Inc.

Complying with all copyright laws is the responsibility of the user.
Without limiting the rights under copyright, no part of this document may
be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical,
photocopying, or otherwise) without the express written permission of
PDE Solutions Inc.

PDE Solutions may have patents, patent applications, trademarks, and
copyrights or other intellectual property rights covering subject matter in
this document. Except as provided in any written license agreement
from PDE Solutions Inc., the furnishing of this document does not give
you any license to these patents, trademarks, copyrights or other
intellectual property.

PDE Solutions, and FlexPDE are either registered trademarks or
trademarks of PDE Solutions Inc. in the United States and/or other
countries.

This version of this and the companion manuals are current as of the
initial release of version 5. Electronic versions of this manual together
with subsequent release notices and the companion manuals in the
FlexPDE documentation series are available online at
www.pdesolutions.com. Electronic versions are updated more
frequently than printed versions, and may reflect recent developments in
FlexPDE more accurately.

Table of Contents
1. Foreword ...1
2. Overview ...2

2.1. What Is FlexPDE? ..2
2.2. What Can FlexPDE Do?...4
2.3. How Does It Do It? ...5
2.4. Who Can Use FlexPDE?..7
2.5. What Does A Script Look Like?..8
2.6. What About Boundary Conditions? ..10

3. Basic Usage ..11
3.1. How Do I Set Up My Problem? ..11
3.2. Problem Setup Guidelines..13
3.3. Notation ..15
3.4. Variables and Equations...16
3.5. Mapping the Domain ..17
3.6. An Example Problem..19
3.7. Generating A Mesh...20
3.8. Defining Material Parameters...22
3.9. Setting the Boundary Conditions..24
3.10. Requesting Graphical Output ...26
3.11. Putting It All Together ...28

4. Some Common Variations ..31
4.1. Controlling Accuracy...31
4.2. Computing Integrals ...33
4.3. Reporting Numerical Results..35
4.4. Summarizing Numerical Results ..36
4.5. Parameter Studies Using STAGES..37
4.6. Cylindrical Geometry ..40

4.6.1. Integrals In Cylindrical Geometry...40
4.6.2. A Cylindrical Example..41

4.7. Time Dependence ..44
4.7.1. Bad Things To Do In Time Dependent Problems..................47

4.8. Eigenvalues and Modal Analysis..48
4.8.1. The Eigenvalue Summary ...51

5. Addressing More Difficult Problems..53
5.1. Nonlinear Coefficients and Equations ..54

5.1.1. Complications Associated with Nonlinear Problems56
5.2. Natural Boundary Conditions ...58

5.2.1. Some Typical Cases..59
5.2.2. An Example of a Flux Boundary Condition............................61

5.3. Discontinuous Variables...63
5.3.1. Contact Resistance..63
5.3.2. Decoupling ...66
5.3.3. Using JUMP in problems with many variables67

6. Using FlexPDE in One-Dimensional Problems...................................69

7. Using FlexPDE in Three-Dimensional Problems71
7.1. The Concept of Extrusion...72
7.2. Extrusion Notation in FlexPDE ...74
7.3. Layering..76
7.4. Setting Material Properties by Region and Layer.........................78
7.5. Void Compartments..80
7.6. Limited Regions..81
7.7. Specifying Plots on Cut Planes ..83
7.8. The Complete 3D Canister...84
7.9. Setting Boundary Conditions in 3D ..87
7.10. Shaped Layer Interfaces ..91
7.11. Integrals in Three Dimensions..95
7.12. More Advanced Plot Controls...99

8. Moving Meshes ...101
8.1. Mesh Balancing ..102
8.2. The Pulsating Blob ...103

9. Controlling Mesh Density ..105
10. Exporting Data to Other Applications..108
11. Solving Nonlinear Problems..112
12. Getting Help ..115
Index..116

1

1. Foreword

This document attempts to introduce the reader gradually to the use of
FlexPDE in the solution of systems of partial differential equations.

We begin with a discussion of the basic character of FlexPDE. We then
construct a simple model problem and proceed to add features to the
model.

The result is a description of the most common features of FlexPDE in
what we hope is a meaningful and understandable evolution that will
allow users to very quickly become accustomed to the use of FlexPDE
and to use it in their own work.

No attempt is made in this manual to present a complete description of
each command or circumstance which can arise. Detailed descriptions
of each command are presented in the companion volume, the FlexPDE
Problem Descriptor Reference.

2

2. Overview

2.1. What Is FlexPDE?

FlexPDE is a "scripted finite element model builder and numerical
solver".
By this we mean that from a script written by the user, FlexPDE performs
the operations necessary to turn a description of a partial differential
equations system into a finite element model, solve the system, and
present graphical and tabular output of the results.

FlexPDE is also a "problem solving environment".
It performs the entire range of functions necessary to solve partial
differential equation systems: an editor for preparing scripts, a mesh
generator for building finite element meshes, a finite element solver to
find solutions, and a graphics system to plot results. The user can edit
the script, run the problem and observe the output, then re-edit and re-
run repeatedly without leaving the FlexPDE application environment.

FlexPDE has no pre-defined problem domain or equation list.
The choice of partial differential equations is totally up to the user.

The FlexPDE scripting language is a "natural" language.
It allows the user to describe the mathematics of his partial differential
equations system and the geometry of his problem domain in a format
similar to the way he might describe it to a co-worker.

For instance, there is an EQUATIONS section in the script, in which
Laplace's equation would be presented as

Div(grad(u)) = 0.

Similarly, there is a BOUNDARIES section in the script, where the
geometric boundaries of a two-dimensional problem domain are
presented merely by walking around the perimeter:

Start(x1,y1) line to (x2,y1) to (x2,y2) to (x1,y2) to CLOSE

This scripted form has many advantages

3

• The script completely describes the equation system and problem
domain, so there is no uncertainty about what equations are being
solved, as might be the case with a fixed-application program.

• New variables, new equations or new terms may be added at will, so
there is never a case of the software being unable to represent a
different loss term, or a different physical effect.

• Many different problems can be solved with the same software, so
there is not a new learning curve for each problem

There is also a corollary effect with the scripted model:
• The user must be able to pose his problem in mathematical form.

In an educational environment, this is good. It's what the student
wants to learn.

In an industrial environment, a single knowledgeable user can
prepare scripts which can be used and modified by less skilled
workers. And a library of application scripts can show how it is
done.

4

2.2. What Can FlexPDE Do?

• FlexPDE can solve systems of first or second order partial differential

equations in one, two or three-dimensional Cartesian geometry, or in
axi-symmetric two-dimensional geometry. (Other geometries can be
supported by including the proper forms of PDE.)

• The system may be steady-state or time-dependent, or alternatively

FlexPDE can solve eigenvalue problems. Steady-state and time-
dependent equations can be mixed in a single problem.

• Any number of simultaneous equations can be solved, subject to the

limitations of the computer on which FlexPDE is run.

• The equations can be linear or nonlinear. (FlexPDE automatically

applies a modified Newton-Raphson iteration process in nonlinear
systems.)

• Any number of regions of different material properties may be defined.

• Modeled variables are assumed to be continuous across material

interfaces. Jump conditions on derivatives follow from the statement
of the PDE system. (CONTACT boundary conditions can handle
discontinuous variables.)

• FlexPDE can be extremely easy to use, and this feature recommends

it for use in education. But FlexPDE is not a toy. By full use of its
power, it can be applied successfully to extremely difficult problems.

5

2.3. How Does It Do It?

FlexPDE is a fully integrated PDE solver, combining several modules to
provide a complete problem solving system:

• A script editing module with syntax highlighting provides a full text

editing facility and a graphical domain preview.

• A symbolic equation analyzer expands defined parameters and

relations, performs spatial differentiation, and symbolically applies
integration by parts to reduce second order terms to create symbolic
Galerkin equations. It then symbolically differentiates these equations
to form the Jacobian coupling matrix.

• A mesh generation module constructs a triangular or tetrahedral

finite element mesh over a two or three-dimensional problem domain.
In two dimensions, an arbitrary domain is filled with an unstructured
triangular mesh. In three-dimensional problems, an arbitrary two-
dimensional domain is extruded into a the third dimension and cut by
arbitrary dividing surfaces. The resulting three-dimensional figure is
filled with an unstructured tetrahedral mesh.

• A Finite Element numerical analysis module selects an appropriate

solution scheme for steady-state, time-dependent or eigenvalue
problems, with separate procedures for linear and nonlinear systems.
The finite element basis may be either quadratic or cubic.

• An adaptive mesh refinement procedure measures the adequacy of

the mesh and refines the mesh wherever the error is large. The
system iterates the mesh refinement and solution until a user-defined
error tolerance is achieved.

• A dynamic timestep control procedure measures the curvature of

the solution in time and adapts the time integration step to maintain
accuracy.

• A graphical output module accepts arbitrary algebraic functions of

the solution and plots contour, surface, vector or elevation plots.

6

• A data export module can write text reports in many formats,
including simple tables, full finite element mesh data, CDF or TecPlot
compatible files.

7

2.4. Who Can Use FlexPDE?

Most of physics and engineering is described at one level or another in
terms of partial differential equations. This means that a scripted solver
like FlexPDE can be applied to virtually any area of engineering or
science.

• Researchers in many fields can use FlexPDE to model their

experiments or apparatus, make predictions or test the importance of
various effects. Parameter variations or dependencies are not limited
by a library of forms, but can be programmed at will.

• Engineers can use FlexPDE to do design optimization studies,

feasibility studies and conceptual analyses. The same software can
be used to model all aspects of a design -- no need for a separate tool
for each effect.

• Application developers can use FlexPDE as the core of a special-

purpose applications that need finite element modeling of partial
differential equation systems.

• Educators can use FlexPDE to teach physics or engineering. A

single software tool can be used to examine the full range of systems
of interest in a discipline.

• Students see the actual equations, and can experiment interactively

with the effects of modifying terms or domains.

8

2.5. What Does A Script Look Like?

A problem description script is a readable text file. The contents of the
file consist of a number of sections, each identified by a header. The
fundamental sections are:

• TITLE – a descriptive label for the output.
• SELECT – user controls over the default behavior of

FlexPDE.
• VARIABLES – here the dependent variables are named.
• DEFINITIONS – useful parameters, relationships or functions

are defined.
• EQUATIONS – each variable is associated with a partial

differential equation.
• BOUNDARIES – the geometry is described by walking the

perimeter of the domain, stringing together line or
arc segments to bound the figure.

• MONITORS and
PLOTS

– desired graphical output is listed, including any
combination of CONTOUR, SURFACE,
ELEVATION or VECTOR plots.

• END – completes the script.

[Note: There are several other optional sections for describing special
aspects of the problem. Some of these will be introduced later in this
document. Detailed rules for all sections are presented in the
FlexPDE Problem Descriptor Reference chapter "Sections".]

Comments can be placed anywhere in a script.
• { Anything inside curly brackets is a comment. }
• ! from an exclamation to the end of the line is a comment.

A simple diffusion equation on a square might look like this:

TITLE 'Simple diffusion equation'
{ this problem lacks sources and boundary conditions }
VARIABLES

u
DEFINITIONS

9

k=3 { conductivity }
EQUATIONS
 div(k*grad(u)) =0
BOUNDARIES

REGION 1
START(0,0)
LINE TO (1,0)

TO (1,1)
TO (0,1)
TO CLOSE

PLOTS
CONTOUR(u)
VECTOR(k*grad(u))

END

Later on, we will show detailed examples of the development of a
problem script.

10

2.6. What About Boundary Conditions?

Proper specification of boundary conditions is crucial to the solution of a
PDE system.

In a FlexPDE script, boundary conditions are presented as the boundary
is being described.

The primary types of boundary condition are VALUE and NATURAL.

The VALUE (or Dirichlet) boundary condition specifies the value that a
variable must take on at the boundary of the domain.

The NATURAL boundary condition specifies a flux at the boundary of
the domain. (The precise meaning of the NATURAL boundary condition
depends on the PDE for which the boundary condition is being specified.
Details are discussed in the Chapter "Natural Boundary Conditions")

In the diffusion problem presented above, for example, we may add fixed
values on the bottom and top edges, and zero-flux conditions on the
sides as follows:

…
BOUNDARIES

REGION 1
START(0,0)
VALUE(u) = 0 LINE TO (1,0) { fixed value on bottom }
NATURAL(u)=0 LINE TO (1,1) { insulated right side }
VALUE(u)=1 LINE TO (0,1) { fixed value on top }
NATURAL(u)=0 LINE TO CLOSE { insulated left side }

…

Notice that a VALUE or NATURAL statement declares a condition which
will apply to the subsequent boundary segments until the declaration is
changed.

11

3. Basic Usage

3.1. How Do I Set Up My Problem?

FlexPDE reads a text script that describes in readable language the
characteristics of the problem to be solved. In simple applications, the
script can be very simple. Complex applications may require much more
familiarity with the abilities of FlexPDE.

In the following discussion, we will begin with the simpler features of
FlexPDE and gradually introduce more complex features as we proceed.

FlexPDE has a built-in editor with which you can construct your problem
script. You can edit the script, run it, edit it some more, and run it again
until the result satisfies your needs. You can save the script for later use
or as a base for later modifications.

The easiest way to begin a problem setup is to copy a similar problem
that already exists.

Whether you start fresh or copy an existing file, there are four basic parts
to be defined:

• Define the variables and equations
• Define the domain
• Define the material parameters
• Define the boundary conditions
• Specify the graphical output.

These steps will be described in the following sections. We will use a
simple 2D heatflow problem as an example, and start by building the
script from the most basic elements of FlexPDE. In later sections, we will
elaborate the script, and address the more advanced capabilities of
FlexPDE in an evolutionary manner. 3D applications rely heavily on 2D
concepts, and will be discussed in a separate chapter.

[Note: We will make no attempt in the following to describe all the
options that are available to the user at any point, but try to keep the
concept clear by illustrating the most common forms. The full range of

12

options is detailed in the FlexPDE Reference. Many will also be
addressed in subsequent topics.]

13

3.2. Problem Setup Guidelines

In posing any problem for FlexPDE, there are some guidelines that
should be followed.

• Start with a fundamental statement of the physical system.

Descriptions of basic conservation principles usually work better than
the heavily massaged pseudo-analytic "simplifications" which
frequently appear in textbooks.

• Start with a simple model, preferably one for which you know the

answer. This allows you both to validate your presentation of the
problem, and to increase your confidence in the reliability of FlexPDE.
(One useful technique is to assume an analytic answer and plug it into
the PDE to generate the source terms necessary to produce that
solution. Be sure to take into account the appropriate boundary
conditions.)

• Use simple material parameters at first. Don't worry about the exact

form of nonlinear coefficients or material properties at first. Try to get
a simple problem to work, and add the complexities later.

• Map out the domain. Draw the outer boundary first, placing boundary

conditions as you go. Then overlay the other material regions. Later
regions will overlay and replace anything under them, so you don't
have to replicate a lot of complicated interfaces.

• Use MONITORS of anything that might help you see what is

happening in the solution. Don't just plot the final value you want to
see and then wonder why it's wrong. Get feedback! That's what the
MONITORS section is there for.

• Annotate your script with frequent comments. Later you will want to

know just what it was you were thinking when you wrote the script.
Include references to sources of the equations or notes on the
derivation.

• Save your work. FlexPDE will write the script to disk whenever you

click "Domain Review" or "Run Script". But if you are doing a lot of
typing, use "Save" or "Save_as" to protect your work from unforseen
interruptions.

14

15

3.3. Notation

In most cases, FlexPDE notation is simple text as in a programming
language.

• Differentiation, such as du/dx, is denoted by the form dx(u). All active
coordinate names are recognized, as are second derivatives like
dxx(u) and differential operators Div, Grad and Curl.

• Names are NOT case sensitive. "F" is the same as "f".
• Comments can be placed liberally in the text. Use { } to enclose

comments or ! to ignore the remainder of the line.

[Note: See the Problem Descriptor Reference chapter on Elements for
a full description of FlexPDE notation.]

16

3.4. Variables and Equations

The two primary things that FlexPDE needs to know are:

• what are the variables that you want to analyze?
• what are the partial differential equations that define them?

The VARIABLES and EQUATIONS sections of a problem script supply
this information. The two are closely linked, since you must have one
equation for each variable in a properly posed system.

In a simple problem, you may have only a single variable, like voltage or
temperature. In this case, you can simply state the variable and
equation:

VARIABLES
Phi

EQUATIONS
Div(grad(Phi)) = 0

In a more complex case, there may be many variables and many
equations. FlexPDE will want to know how to associate equations with
variables, because some of the details of constructing the model will
depend on this association.

Each equation must be labelled with the variable to which it is associated
(name and colon), as indicated below:

VARIABLES

A,B
EQUATIONS

A: Div(grad(A)) = 0
B: Div(grad(B)) = 0

Later, when we specify boundary conditions, these labels will be used to
associate boundary conditions with the appropriate equation.

17

3.5. Mapping the Domain

Two-Dimensional Domain Description

A two-dimensional problem domain is described in the BOUNDARIES
section, and is made up of REGIONS, each assumed to contain unique
material properties. A REGION may contain many closed loops or
islands, but they are all assumed to have the same material properties.

• A REGION specification begins with the statement REGION <number>

(or REGION "name") and all loops following the header are included in
the region.

• REGIONs occurring later in the script overlay and cover up parts of

earlier REGIONs.

• The first REGION should contain the entire domain. This is an

unenforced convention that makes the attachment of boundary
conditions easier.

Region shapes are described by walking the perimeter, stepping from
one joint to another with LINE, SPLINE or ARC segments. Each
segment assumes that it will continue from the end of the previous
segment, and the START clause gets things rolling. You can make a
segment return to the beginning with the word CLOSE (or TO CLOSE).

• A rectangular region, for example, is made up of four line segments:

START(x1,y1)
LINE TO(x2,y1)

TO (x2,y2)
TO (x1,y2)
TO CLOSE

(Of course, any quadrilateral figure can be made with the same
structure, merely by changing the coordinates. And any polygonal
figure can be constructed by adding more points.)

• Arcs can be built in several ways, the simplest of which is by

specifying a center and an angle:

18

START(r,0)
ARC(CENTER=0,0) ANGLE=360

• Arcs can also be built by specifying a center and an end point:

START(r,0)
ARC(CENTER=0,0) TO (0,r) { a 90 degree arc }

An elliptical arc will be built if the distance from the center to the
endpoint is different than the distance from the center to the
beginning point. The axes of the ellipse will extend along the
horizontal and vertical coordinate axes; you cannot build a tilted
ellipse.

• Loops can be named for use in later references, as in:

 START "Name" (…)

The prototype form of The BOUNDARIES section is then:

BOUNDARIES

REGION 1
<closed loops around the domain>

REGION 2
<closed loops around overlays of the second material>

…

You can build your domain a little at a time, using the "domain" menu
button to preview a drawing of what you have created so far.

The "Save" and "Save_As" menu buttons allow you to frequently save
your work, just in case.

19

3.6. An Example Problem

Let us build as an example a circular inclusion between two plates. We
will simply treat the plates as the top and bottom surfaces of a square
enclosure, with the circle centered between them. Using the statements
above and adding the required control labels, we get:

BOUNDARIES

REGION 1 'box' { the bounding box }
START(-1,-1)
LINE TO(1,-1)

TO (1,1)
TO (-1,1)
TO CLOSE

REGION 2 'blob' { the embedded circular 'blob' }
START 'ring' (1/2,0)

ARC(CENTER=0,0) ANGLE=360 TO CLOSE

The resulting figure displayed by the "domain" button is this:

[Note: The detailed Rules for constructing domain boundaries is
included in the Reference chapter "Sections | Boundaries".]

20

3.7. Generating A Mesh

When you select "Run Script" from the Controls menu (or the button),
FlexPDE will begin execution by automatically creating a finite element
mesh to fit the domain you have described. In the automatic mesh, cell
sizes will be determined by the spacing between explicit points in the
domain boundary, by the curvature of arcs, or by explicit user density
controls.

In our example, the automatic mesh looks like this:

Notice that the circular boundary of region 2 is mapped onto cell legs.

There are several controls that the user can apply to change the
behavior of the automatic mesh. These are described in detail in the
chapter "Controlling Mesh Density" below.

As an example, we can cause the circular boundary of region 2 to be
gridded more densely by using the modifier MESH_SPACING:

REGION 2 'blob' { the embedded 'blob' }

START(1/2,0)
MESH_SPACING = 0.05

21

ARC(CENTER=0,0) ANGLE=360

The resulting mesh looks like this:

In most cases, it is not necessary to intervene in the mesh generation,
because as we will see later, FlexPDE will adaptively refine the mesh
wherever it detects that there are strong curvatures in the solution.

22

3.8. Defining Material Parameters

Much of the complexity of real problems comes in the fact that the
coefficients that enter into the partial differential equation system take on
different values in the various materials of which a structure is
composed.

This is handled in FlexPDE by two facilities. First, the material
parameters are given names and default values in the DEFINITIONS
section. Second, the material parameters are given regional values
within the domain REGIONS.

So far, it has been of little consequence whether our test problem was
heat flow or electrostatics or something else entirely. However, for
concreteness in what follows, let us assume it is a heat equation,
describing an insulator imbedded in a conductor between to heat
reservoirs. We will give the circular insulator a conductivity of 0.001 and
the surrounding conductor a conductivity of 1.

First, we define the name of the constant and give it a default value in
the definitions section:

DEFINITIONS
k = 1

This default value will be used as the value of "k" in every REGION of the
problem, unless specifically redefined in each region.

Now we introduce the constant into the equation:

EQUATIONS
Div(-k*grad(phi)) = 0

Then we specify the regional value in region 2:

...
REGION 2 'blob' { the embedded blob }

k = 0.001
START(1/2,0)
ARC(CENTER=0,0) ANGLE=360

23

We could also define the parameter k=1 for the conductor in REGION 1,

if it seemed useful for clarity.

24

3.9. Setting the Boundary Conditions

Boundary conditions are specified as modifiers during the walk of the
perimeter of the domain.

The primary types of boundary condition are VALUE and NATURAL.

The VALUE (or Dirichlet) boundary condition specifies the value that a
variable must take on at the boundary of the domain. Values may be
any legal arithmetic expression, including nonlinear dependences on
variables.

The NATURAL boundary condition specifies a flux at the boundary of
the domain. Definitions may be any legal arithmetic expression,
including nonlinear dependence on variables. With Laplace's equation,
the NATURAL boundary condition is equivalent to the Neumann or
normal derivative boundary condition.

[Note: The precise meaning of the NATURAL boundary condition
depends on the PDE for which the boundary condition is being
specified. Details are discussed in the Chapter "Natural Boundary
Conditions."]

Each boundary condition statement takes as an argument the name of a
variable. This name associates the boundary condition with one of the
listed equations, for it is in reality the equation that is modified by the
boundary condition. The equation modified by VALUE(u)=0, for
example, is the equation which has previously been determined to define
u. NATURAL(u)=0 will depend for its meaning on the form of the
equation which defines u.

In our sample problem, suppose we wish to define a zero temperature
along the bottom edge, an insulating boundary on the right side, a
temperature of 1 on the top edge, and an insulating boundary on the left.
We can do this with these commands:

…
REGION 1 'box' { the bounding box }

START(-1,-1)
{ Phi=0 on base line: }
VALUE(Phi)=0 LINE TO(1,-1)
{ normal derivative =0 on right side: }

25

NATURAL(Phi)=0 LINE TO (1,1)
{ Phi = 1 on top: }
VALUE(Phi)=1 LINE TO (-1,1)
{ normal derivative =0 on left side: }
NATURAL(Phi)=0 LINE TO CLOSE

Notice that a VALUE or NATURAL statement declares a condition which
will apply to the subsequent boundary segments until the declaration is
changed.

Notice also that the segment shape (Line or Arc) must be restated after a
change of boundary condition.

[Note: Other boundary condition forms are allowed. See the
Reference chapter "Sections | Boundaries".]

26

3.10. Requesting Graphical Output

The MONITORS and PLOTS sections contain requests for graphical
output.

MONITORS are used to get ongoing information about the progress of
the solution.

PLOTS are used to specify final output, and these graphics will be saved
in a disk file for later viewing.

FlexPDE recognizes several forms of output commands, but the primary
forms are:

• CONTOUR a plot of contours of the argument; it may be color-filled
• SURFACE a 3D surface of the argument
• VECTOR a field of arrows
• ELEVATION a "lineout" along a defined path
• SUMMARY text-only reports

Any number of plots may be requested, and the values plotted may be
any consistent algebraic combination of variables, coordinates and
defined parameters.

In our example, we will request a contour of the temperature, a vector
map of the heat flux, k*grad(Phi), an elevation of temperature along the
center line, and an elevation of the normal heat flux on the surface of the
blob:

PLOTS
CONTOUR(Phi)
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (0,-1) to (0,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'

Output requested in the PLOTS section is produced when FlexPDE has
finished the process of solving and regridding, and is satisfied that all
cells are within tolerance. An alternative section, identical in form to the
PLOTS section but named MONITORS, will produce transitory output at
more frequent intervals, as an ongoing report of the progress of the
solution.

27

A record of all PLOTS is written in a file with suffix .PG5 and the name of
the .PDE script file. These recorded plots may be viewed at a later time
by invoking the VIEW item in the FlexPDE main menu.

MONITORS are not recorded in the .PG5 file. It is strongly
recommended that MONITORS be used liberally during script
development to determine that the problem has been properly set up and
that the solution is proceeding as expected.

[Note: FlexPDE accepts other forms of plot command, including GRID
plots and HISTORIES. See the Reference chapter "Sections |
Monitors and Plots".]

28

3.11. Putting It All Together

In the previous sections, we have gradually built up a problem
specification.

Putting it all together and adding a TITLE, it looks like this:

TITLE 'Heat flow around an Insulating blob'
VARIABLES

Phi { the temperature }
DEFINITIONS

K = 1 { default conductivity }
R = 0.5 { blob radius }

EQUATIONS
Div(-k*grad(phi)) = 0

BOUNDARIES
REGION 1 'box'

START(-1,-1)
VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE

REGION 2 'blob' { the embedded blob }
k = 0.001
START 'ring' (R,0)
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

PLOTS
CONTOUR(Phi)
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (0,-1) to (0,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'

END

We have defined a complete and meaningful problem in twenty-three
readable lines.

The output from this script looks like this:

29

30

31

4. Some Common Variations

4.1. Controlling Accuracy

FlexPDE applies a consistency check to integrals of the PDE's over the
mesh cells. From this it estimates the relative uncertainty in the solution
variables and compares this to an accuracy tolerance. If any mesh cell
exceeds the tolerance, that cell is split, and the solution is recomputed.

The error tolerance is called ERRLIM, and can be set in the SELECT
section of the script.

The default value of ERRLIM is 0.001, which means that FlexPDE will
refine the mesh until the estimated error in any variable (relative to the
variable range) is less than 0.1% over every cell of the mesh.

[Note: This does not mean that FlexPDE can guarantee that the
solutions is accurate to 0.1% over the domain. Individual cell errors
may cancel or accumulate in ways that are hard to predict.]

In our sample problem, we can insert the statement

SELECT ERRLIM=1e-5

as a new section. This tells FlexPDE to split any cell in which the
consistency check implies an error of more than 0.001% over the cell.

FlexPDE refines the mesh twice, and completes with a mesh that looks
like this:

32

In this particular case, the result plots are not noticeably different from
the default case.

[Note: In time-dependent problems, spatial and temporal errors are
both set by ERRLIM, but they can also be independently controlled by
XERRLIM and TERRLIM. See the Problem Descriptor Reference.]

33

4.2. Computing Integrals

In many cases, it is an integral of some function that is of interest in the
solution of a PDE problem. FlexPDE has an extensive repertoire of
integration facilities, including volume integrals, surface integrals on
bounding surfaces and line integrals on bounding lines. The two-
dimensional forms are

• Result = LINE_INTEGRAL(<expression>, <boundary name>)

Computes the integral of <expression> over the named boundary.
Note: BINTEGRAL is a pseudonym for LINE_INTEGRAL.]

• Result = VOL_INTEGRAL(<expression>, <region name>)

Computes the integral of <expression> over the named region.
If <region name> is omitted, the integral is over the entire domain.

[Note: INTEGRAL is a pseudonym for VOL_INTEGRAL.]
[Note: In 2D Cartesian geometry, AREA_INTEGRAL is also the
same as VOL_INTEGRAL, since the domain is assumed to have a
unit thickness in Z.]

In our example problem, we might define

DEFINITIONS
{ the total flux across 'ring':

(recall that 'ring' is the name of the boundary of 'blob')}
Tflux = LINE_INTEGRAL(NORMAL(-k*grad(Phi)), 'ring')
{ the total heat energy in 'blob': }
Tenergy = VOL_INTEGRAL(Phi, 'blob')

In the case of internal boundaries, there is sometimes a different value of
the integral on the two sides of the boundary. The two values can be
distinguished by further specifying the region in which the integral is to
be evaluated:

{ the total flux across 'ring': }
Tflux = LINE_INTEGRAL(NORMAL(-k*grad(Phi)), 'ring', 'box')
{ evaluated on the 'box' side of the boundary }

34

[Note: Three-dimensional integral forms will be addressed in a later
section. A full description of integral operators is presented in the
Reference section "Elements | Operators | Integral Operators".]

35

4.3. Reporting Numerical Results

In many cases, there are numerical quantities of interest in evaluating or
classifying output plots. Any plot command can be followed by the
REPORT statement:

REPORT <value> AS "title"
Or just

REPORT <value>

Any number of REPORTs can be requested following any plot, subject to
the constraint that the values are printed on a single line at the bottom of
the plot, and too many reports will run off and be lost.

For instance, we might modify the contour plot of our example plot to say

CONTOUR(Phi) REPORT(k) REPORT(INTEGRAL(Phi, 'blob'))

On running the problem, we might see something like this at the bottom
of the plot:

36

4.4. Summarizing Numerical Results

A special form of plot command is the SUMMARY. This plot command
does not generate any pictorial output, but instead creates a page for the
placement of numerous REPORTs.

SUMMARY may be given a text argument, which will be printed as a
header.

For example,

SUMMARY

REPORT(k)
REPORT(INTEGRAL(Phi,'blob')) as "Heat energy in blob"
REPORT('no more to say')

In our sample, we will see a separate report page with the following
instead of a graphic:

37

4.5. Parameter Studies Using STAGES

FlexPDE supports a facility for performing parameter studies within a
single invocation. This facility is referred to as "staging". Using staging,
a problem can be run repeatedly, with a range of values for a single
parameter or a group of parameters.

The fundamental form for invoking a staged run is to define one or more
parameters as STAGED:

DEFINITIONS
Name = STAGED(<value1>,<value2>,….)

The problem will be re-run as many times as there are values in the
value list, with "name" taking on consecutive values from the list in
successive runs.

If the STAGED parameter does not affect the domain dimensions, then
each successive run will use the result and mesh from the previous run
as a starting condition.

[Note: This technique can also be used to approach the solution of a
strongly nonlinear problem, by starting with a linear system and
gradually increasing the weight on a nonlinear component.]

If the STAGED parameter is used as a dimension in the domain
definition, then each successive run will be restarted from the domain
definition, and there will be no carry-over of solutions from one run to the
next.

As for time-dependent problems (which we will discuss later), variation of
arbitrary quantities across the stages of a problem can be displayed by
HISTORY plots. In staged runs the history is plotted against stage
number.

As an example, let us run our sample heat flow problem for a range of
conductivities and plot a history of the top edge temperature.

We will modify the definition of K in the insulator as follows:

DEFINITIONS

38

Kins = STAGED(0.01, 0.1, 1, 10)
{ Notice that the STAGED specification must appear at the initial
declaration of a name. In cannot be used in a regional redefinition. }

…
REGION 2 'blob' { the embedded blob }

K = Kins
START(R,0) ARC(CENTER=0,0) ANGLE=360

…
HISTORY(Phi) AT (0,-R)

When this modified descriptor is run, the history plot produces the
following:

In a staged run, all PLOTS and MONITORS requested will be presented
for each stage of the run.

Other Staging Controls

• The global selector STAGES can be used to control the number of

stages to run. If this selector appears, it overrides any STAGED lists

39

in the DEFINITIONS section (lists shorter than STAGES will report an
error). It also defines the global name STAGE, which can be used
subsequently in arithmetic expressions. See the Problem Descriptor
Reference for details.

• The default action is to proceed at once from one stage to the next, but

you can cause FlexPDE to pause while you examine the plots by
placing the command AUTOSTAGE=OFF in the SELECT section of
the script.

40

4.6. Cylindrical Geometry

In addition to two-dimensional Cartesian geometry, FlexPDE can solve
problems in axisymmetric cylindrical coordinates, (r,z) or (z,r).

Cylindrical coordinates are invoked in the COORDINATES section of the
script. Two forms are available, XCYLINDER and YCYLINDER. The
distinction between the two is merely in the orientation of the graphical
displays.

• XCYLINDER places the rotation axis of the cylinder, the Z coordinate,

along the abscissa (or "x"-axis) of the plot, with radius along the
ordinate.

• YCYLINDER places the rotation axis of the cylinder, the Z coordinate,
along the ordinate (or "y" axis) of the plot, with axial extension along
the abscissa.

Either form may optionally be followed by a parenthesized renaming of
the coordinates. In either case, the names are (abscissa, ordinate). The
defaults are

XCYLINDER implies XCYLINDER('Z','R').
YCYLINDER implies YCYLINDER('R','Z').

4.6.1. Integrals In Cylindrical Geometry

The VOL_INTEGRAL (alias INTEGRAL) operator in Cylindrical
geometry is weighted by 2*PI*R, representing the fact that the equations
are solved in a revolution around the axis.

An integral over the cross-sectional area of a region may be requested
by the operator AREA_INTEGRAL. This form differs from
VOL_INTEGRAL in that the 2*PI*R weighting is absent.

Similarly, the operator SURF_INTEGRAL will form the integral over a
boundary, analogous to the LINE_INTEGRAL operator, but with an area
weight of 2*PI*R.

41

4.6.2. A Cylindrical Example

Let us now convert our Cartesian test problem into a cylindrical one. If
we rotate the box and blob around the left boundary, we will form a torus
between two circular plates (like a donut in a round box).

These changes will be required:

• We must offset the coordinates, so the left boundary becomes R=0.
• Since we want the rotation axis in the Y-direction, we must use

YCYLINDER coordinates.
• Since 'R' is now a coordinate name, we must rename the 'R' used for

the blob radius.

The full script, converted to cylindrical coordinates is then:

TITLE 'Heat flow around an Insulating Torus'
COORDINATES

YCYLINDER
VARIABLES

Phi { the temperature }
DEFINITIONS

K = 1 { default conductivity }
Rad = 0.5 { blob radius (renamed)}

EQUATIONS
Div(-k*grad(phi)) = 0

BOUNDARIES
REGION 1 'box'

START(0,-1)
VALUE(Phi)=0 LINE TO (2,-1)
NATURAL(Phi)=0 LINE TO (2,1)
VALUE(Phi)=1 LINE TO (0,1)
NATURAL(Phi)=0 LINE TO CLOSE

REGION 2 'blob' { the embedded blob }
k = 0.001
START 'ring' (1,Rad)
ARC(CENTER=1,0) ANGLE=360 TO CLOSE

PLOTS
CONTOUR(Phi)
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (1,-1) to (1,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'

42

END

The resulting contour and boundary plot look like this:

43

44

4.7. Time Dependence

Unless otherwise defined, FlexPDE recognizes the name "T" (or "t") as
representing time. If references to time appear in the definitions or
equations, FlexPDE will invoke a solution method appropriate to initial-
value problems.

FlexPDE will apply a heuristic control on the timestep used to track the
evolution of the system. Initially, this will be based on the time
derivatives of the variables, and later it will be chosen so that the time
behavior of the variables is nearly quadratic. This is done by shortening
or lengthening the time intervals so that the cubic term in a Taylor
expansion of the variables in time is below the value of the global
selector ERRLIM.

In time dependent problems, several new things must be specified:

• The THRESHOLD of meaningful values for each variable (if not

apparent from initial values).
• The time-dependent PDE's
• The time range of interest,
• The times at which plots should be produced
• Any history plots that may be desired

[Note: FlexPDE can treat only first derivatives in time. Second-order
equations must be split into two equations by defining an intermediate
variable.]

The time range is specified by a new script section

TIME <start> TO <finish>

Plot times are specified by preceding any block of plot commands by a
time control, in which specific times may be listed, or intervals and end
times, or a mixture of both:

FOR T = <t1> <t2> BY <step> TO <t3> ….

We can convert our heat flow problem to a time dependent one by
including a time term in the heat equation:

45

Div(k*grad(Phi)) = c*dt(Phi)

To make things interesting, we will impose a sinusoidal driving
temperature at the top plate, and present a history plot of the
temperature at several internal points.

The whole script with pertinent modifications now looks like this:

TITLE 'Transient Heat flow around an Insulating blob'
VARIABLES

Phi (threshold=0.01) { the temperature }
DEFINITIONS

K = 1 { default conductivity }
C = 1 { default heat capacity }
R = 1/2

EQUATIONS
Div(-K*grad(phi)) + C*dt(Phi) = 0

BOUNDARIES
REGION 1 'box'

START(-1,-1)
VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=sin(t) LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE

REGION 2 'blob' { the embedded blob }
K = 0.001
C = 0.1
START(R,0)
ARC(CENTER=0,0) ANGLE=360

TIME 0 TO 2*pi
PLOTS

FOR T = pi/2 BY pi/2 TO 2*pi
CONTOUR(Phi)
VECTOR(-K*grad(Phi))
ELEVATION(Phi) FROM (0,-1) to (0,1)

HISTORIES
HISTORY(Phi) AT (0,r/2) (0,r) (0,3*r/2)

END

At the end of the run (t=2*pi), the contour and history look like this:

46

47

4.7.1. Bad Things To Do In Time Dependent
Problems

Inconsistent Initial Conditions and Instantaneous Switching

If you start off a time-dependent calculation with initial conditions that are
inconsistent, or turn on boundary values instantaneously at the start time
(or some later time), you induce strong transient signals in the system.
This will cause the time step, and probably the mesh size as well, to be
cut to tiny values to track the transients.

Unless it is specifically the details of these transients that you want to
know, you should start with initial conditions that are a consistent solution
to a steady problem, and then turn on the boundary values, sources or
driving fluxes over a time interval that is meaningful in your problem.

It is a common mistake to think that simply turning on a source is a
smooth operation. It is not. Mathematically, the turn-on time is
significantly less that a femtosecond (zero, in fact), with attendant
terahertz transients. If that's the problem you pose, then that's the
problem FlexPDE will try to solve. More realistically, you should turn on
your sources over a finite time. Electrical switches take milliseconds,
solid state switches take microseconds. But if you only want to see what
happens after a second or two, then fuzz the turn-on.

Turning on a driving flux or a volume source is somewhat more gentle
than a boundary value, because it implies a finite time to raise the
boundary value to a given level. But there is still a meaningful time
interval over which to turn it on.

48

4.8. Eigenvalues and Modal Analysis

FlexPDE can also compute the eigenvalues and eigenfunctions of a PDE
system.

Consider the homogeneous time-dependent heat equation as in our
example above,

0C K
t
φ φ∂

− ∇ ∇ =
∂

i

together with homogeneous boundary conditions
0φ =

and/or

0
n
φ αφ∂

+ =
∂

on the boundary.

If we wish to solve for steady oscillatory solutions to this equation, we
may assert

(, ,) (,)exp()x y t x y tφ ψ β= −

The PDE then becomes

0K
C
ψ λψ

λ β
∇ ∇ + =

= −
i

The values of λ and ψ for which this equation has nontrivial solutions
are known as the eigenvalues and eigenfunctions of the system,
respectively. All steady oscillatory solutions to the PDE can be made up
of combinations of the various eigenfunctions, together with a particular
solution that satisfies any non-homogeneous boundary conditions.

Two modifications are necessary to our basic steady-state script for the
sample problem to cause FlexPDE to solve the eigenvalue problem.

• A value must be given to the MODES parameter in the SELECT

section. This number determines the number of distinct values of λ
that will be calculated. The values reported will be those with lowest
magnitude.

49

• The equation must be written using the reserved name LAMBDA for
the eigenvalue.

• The equation should be written so that values of LAMBDA are positive,
or problems with the ordering during solution will result. The full
descriptor for the eigenvalue problem is then:

TITLE 'Modal Heat Flow Analysis'
SELECT

modes=4
VARIABLES

Phi { the temperature }
DEFINITIONS

K = 1 { default conductivity }
R = 0.5 { blob radius }

EQUATIONS
Div(k*grad(Phi)) + LAMBDA*Phi = 0

BOUNDARIES
REGION 1 'box'

START(-1,-1)
VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=0 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE

REGION 2 'blob' { the embedded blob }
k = 0.2 { This value makes more interesting pictures }
START 'ring' (R,0)
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

PLOTS
CONTOUR(Phi)
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (0,-1) to (0,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'

END

The solution presented by FlexPDE will have the following
characteristics:

• The full set of PLOTS will be produced for each of the requested

modes.
• An additional plot page will be produced listing the eigenvalues.
• The mode number and eigenvalue will be reported on each plot.
• LAMBDA is available as a defined name for use in arithmetic

expressions.

50

The first two contours are as follows:

51

4.8.1. The Eigenvalue Summary

When running an Eigenvalue problem, FlexPDE automatically produces
an additional plot displaying a summary of the computed eigenvalues.

If the user specifies a SUMMARY plot, then this plot will supplant the
automatic summary, allowing the user to add reports to the eigenvalue
listing.

For example, we can add to our previous descriptor the plot
specification:

SUMMARY
REPORT(lambda)
REPORT(integral(phi))

52

This produces the following report on the summary page:

53

5. Addressing More Difficult
Problems

If heat flow on a square were all we wanted to do, then there would
probably be no need for FlexPDE. The power of the FlexPDE system
comes from the fact that almost any functional form may be specified for
the material parameters, the equation terms, or the output functions.
The geometries may be enormously complex, and the output
specification is concise and powerful.

In the following sections, we will address some of the common situations
that arise in real problems, and show how they may be treated in
FlexPDE.

54

5.1. Nonlinear Coefficients and Equations

One common complication that arises is that either the terms of the
equation or the material properties are complicated functions of the
system variables. FlexPDE understands this, and has made full
provision for handling such systems.

Suppose, for example, that the conductivity in the 'blob' of our example
problem were in fact a strong function of the temperature. Say, for
example, that K=exp(-5*phi). The solution couldn't be simpler. Just
define it the way you want it and click "run":

…
REGION 2 'blob' { the embedded blob }

k = exp(-5*phi)
…

The appearance of a nonlinear dependence will automatically activate
the nonlinear solver, and all the dependency details will be handled by
FlexPDE.

The modified result appears immediately:

55

Nonlinear terms in the equation are just as easy. If our system has a
nonlinear sinusoidal source, for example, we may type:

EQUATIONS

Div(k*grad(phi)) + 0.01*phi*sin(phi) = 0

Click "run", and the solution appears:

56

5.1.1. Complications Associated with Nonlinear
Problems

Actually, nonlinear problems are frequently more difficult than we have
implied above, for several reasons.

• Nonlinear problems can have more than one solution.
• A nonlinear problem may not, in fact, have a solution at all.

FlexPDE uses a Newton-Raphson iteration process to solve nonlinear
systems. This technique can be very sensitive to the initial estimate of
the solution. If the starting conditions are too far from the actual solution,
it may be impossible to find the answer, even though it might be quite
simple from a different starting value.

57

There are several things that can be done to help a nonlinear problem
find a solution:

• Provide as good an initial value as you can, using the INITIAL

VALUES section of the script.
• Ensure that the boundary conditions are consistent.
• Use STAGES to progress from a linear to a nonlinear system, allowing

the linear solution to provide initial conditions for the nonlinear one.
• Pose the problem as a time-dependent one, with time as an artificial

relaxation dimension.
• Use SELECT CHANGELIM to limit the excursion at each step and

force FlexPDE to creep toward a solution.
• Use MONITORS to display useful aspects of the solution, to help

identify troublesome terms.

We will return in a later section to the question of intransigent nonlinear
problems.

58

5.2. Natural Boundary Conditions

The term "natural boundary condition" usually arises in the calculus of
variations, and since the finite element method is fundamentally one of
minimization of an error functional, the term arises also in this context.

The term has a much more intuitive interpretation, however, and it is this
which we will try to present.

Consider a Laplace equation,

0u∇ ∇ =i

The Divergence Theorem says that the integral of this equation over all
space is equal merely to the integral over the bounding surface of the
normal component of the flux,

() ()
A S

u dA n u dl∇ ∇ = ∇∫∫ ∫i iv

(we have presented the equation in two dimensions, but it is valid in
three dimensions as well).

The surface value of n u∇i is in fact the "natural boundary condition"
for the Laplace (and Poisson) equation. It is the way in which the system
inside interacts with the system outside. It is the (negative of the) flux of
the quantity u that crosses the system boundary.

The Divergence Theorem is a particular manifestation of the more
general process of Integration by Parts. You will remember the basic
rule,

b bb

aa a
udv uv vdu= −∫ ∫

The term uv is evaluated at the ends of the integration interval and
gives rise to surface terms. Applied to the integration of a divergence,
integration by parts produces the Divergence Theorem.

FlexPDE applies integration by parts to all terms of the partial differential
equations that contain second-order derivatives of the system variables.

59

In the Laplace equation, of course, this means the only term that
appears.

In order for a solution of the Laplace equation (for example) to be
achieved, one must specify at all points of the boundary either the value
of the variable (in this case, u) or the value of n u∇i .

In the notation of FlexPDE,

VALUE(u)=u1 supplies the former, and
NATURAL(u)=F supplies the latter.

In other words,

The NATURAL boundary condition statement in FlexPDE supplies
the value of the surface flux, as that flux is defined by the
integration of the PDE by parts.

Consistent with our discussion of nonlinear equations, the value given for
the surface flux may be a nonlinear value.

The radiation loss from a hot body, for example, is proportional to the
fourth power of temperature, and the statement

NATURAL(u) = -k*u^4
is a perfectly legal boundary condition for the Laplace equation in
FlexPDE.

5.2.1. Some Typical Cases

Since integration by parts is a fundamental mathematical operation, it
will come as no surprise that its application can lead to many of the
fundamental rules of physics, such as Ampere's Law.

For this reason, the Natural boundary condition is frequently a statement
of very fundamental conservation laws in many applications.

But it is not always obvious at first what its meaning might be in
equations which are more elaborate than the Laplace equation.

60

So let us first list some basic terms and their associated natural
boundary condition contributions (we present these rules for two-
dimensional geometry, but the three-dimensional extensions are readily
seen).

• Applied to the term () /f u x∂ ∂ , integration by parts yields

() () ()f u dxdy f u dy f u dl
x

α∂
= =

∂∫∫ ∫ ∫v v

Here is the x-direction cosine of the surface normal and is
the differential path length. Since FlexPDE applies integration by
parts only to second order terms, this rule is applied only if the

function contains further derivatives of . Similar rules apply
to derivatives with respect to other coordinates.

• Applied to the term 2 2() /f u x∂ ∂ , integration by parts yields
2

2

() () ()f u f u f udxdy dy dl
x x x

α∂ ∂ ∂
= =

∂ ∂ ∂∫∫ ∫ ∫v v

Since this term is second order, it will always result in a contribution
to the natural boundary condition.

• Applied to the term ()F u∇
G
i , integration by parts yields the

Divergence Theorem

ˆ() ()F u dxdy F u ndl∇ =∫∫ ∫
G G
i iv

Here n̂ is the outward surface normal unit vector.
As with the x-derivative case, integration by parts will not be applied

unless the vector F
G

 itself contains further derivatives of u.

• Applied to the term ()F u∇ ×
G

, integration by parts yields the Curl
Theorem

ˆ() ()F u dxdy n F u dl∇ × = ×∫∫ ∫
G G

v

Using these formulas, we can examine what the natural boundary
condition means in several common cases:

61

The Heat Equation

Div(-k*grad(Temp)) + Source = 0
Natural(Temp) = outward surface-normal flux = normal(-k*grad(Temp))
[Notice that we have written the PDE in terms of heat flux with the
negative sign imbedded in the equation. If the sign is left out, the sign of
the Natural is reversed as well.]

One-dimensional heat equation

dx(-k*dx(Temp)) + Source = 0
Natural(Temp) = outward surface-normal component of flux = (-
k*dx(temp)*nx),
where nx is the x-direction cosine of the surface normal.
Similar forms apply for other coordinates.

Magnetic Field Equation

curl(curl(A)/mu) = J
Natural(A) = tangential component of H = tangential(curl(A)/mu)

Convection Equation

dx(u)-dy(u)=0
Natural(u) is undefined, because there are no second-order terms.
See the section "Hyperbolic systems" for further discussion.

5.2.2. An Example of a Flux Boundary Condition

Let us return again to our heat flow test problem and investigate the
effect of the Natural boundary condition. As originally posed, we
specified Natural(Phi)=0 on both sidewalls. This corresponds to zero flux
at the boundary. Alternatively, a convective cooling loss at the boundary
would correspond to a flux

Flux = -K*grad(Phi) = Phi – Phi0

where Phi0 is a reference cooling temperature. With convectively cooled
sides, our boundary specification looks like this (assuming Phi0=0):

REGION 1 'box'

START(-1,-1)

62

VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=Phi LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)
NATURAL(Phi)=Phi LINE TO CLOSE

The result of this modification is that the isotherms curve upward:

63

5.3. Discontinuous Variables

The default behavior of FlexPDE is to consider all variables to be
continuous across material interfaces. This arises naturally from the
finite element model, which populates the interface with nodes that are
shared by the material on both sides.

FlexPDE supports discontinuities in variables at material interfaces by
use of the words CONTACT and JUMP in the script language.

CONTACT(V) is a special form of NATURAL boundary condition which
also causes the affected variable to be stored in duplicate nodes at the
interface, capable of representing a double value.

JUMP(v) means the instantaneous change in the value of variable "v"
when moving outward across an interface from inside a given material.
At an interface between materials '1' and '2', JUMP(V) means (V2-V1) in
material '1', and (V1-V2) in material '2'.

The expected use of JUMP is in a CONTACT Boundary Condition
statement on an interior boundary. The combination of CONTACT and
JUMP causes a line or surface source to be generated proportional to
the difference between the two values.

JUMP may also be used in other boundary condition statements, but it is
assumed that the argument of the JUMP is a variable for which a
CONTACT boundary condition has been specified. See the example
"Samples | Misc | Discontinuous_Variables |
Contact_Resistance_Heating.pde" for an example of this kind of use.

The interpretation of the JUMP operator follows the model of contact
resistance, as explained in the next section.

5.3.1. Contact Resistance

The problem of contact resistance between two conductors is a typical
one requiring discontinuity of the modeled variable.

In this problem, a very thin resistive layer causes a jump in the
temperature or voltage on the two sides of an interface. The magnitude

64

of the jump is proportional to the heat flux or electric current flowing
across the resistive film. In microscopic analysis, of course, there is a
physical extent to the resistive material. But its dimensions are such as
to make true modelling of the thickness inconvenient in a finite element
simulation.

In the contact resistance case, the heat flux across a resistive interface
between materials '1' and '2' as seen from side '1' is given by

F1 = -K1*dn(T) = -(T2-T1)/R
where F1 is the value of the outward heat flux, K1 is the heat
conductivity, dn(T) is the outward normal derivative of T, R is the
resistance of the interface film, and T1 and T2 are the two values of the
temperature at the interface.

As seen from material '2',

F2 = -K2*dn(T) = -(T1-T2)/R = -F1
Here the normal has reversed sign, so that the outflow from '2' is the
negative of the outflow from '1', imposing energy conservation.

The Natural Boundary Condition for the heat equation

div(-K*grad(T)) = H
is given by the divergence theorem as

Natural(T) = -K*dn(T),
representing the outward heat flux.
This flux can be related to a discontinuous variable by use of the
CONTACT boundary condition in place of the NATURAL.

The FlexPDE expression JUMP(T) is defined as (T2-T1) in material '1'
and (T1-T2) in material '2'.

The representation of the contact resistance boundary condition is
therefore

CONTACT(T) = -JUMP(T)/R
This statement means the same thing in both of the materials sharing the
interface. [Notice that the sign applied to the JUMP reflects the sign of
the divergence term.]

We can modify our previous example problem to demonstrate this, by
adding a heat source to drive the jump, and cooling the sidewalls. The
restated script is:

TITLE 'Contact Resistance on a heated blob'
VARIABLES

65

Phi { the temperature }
DEFINITIONS

K = 1 { default conductivity }
R = 0.5 { blob radius }
H = 0 { internal heat source }
Res = 0.5 { contact resistance }

EQUATIONS
Div(-k*grad(phi)) = H

BOUNDARIES
REGION 1 'box'

START(-1,-1)
VALUE(Phi)=0 { cold outer walls }
LINE TO (1,-1) TO (1,1) TO (-1,1) TO CLOSE

REGION 2 'blob' { the embedded blob }
H = 1 { heat generation in the blob }
START 'ring' (R,0)
CONTACT(phi) = -JUMP(phi)/Res
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

PLOTS
CONTOUR(Phi)
SURFACE(Phi) mesh
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (0,-1) to (0,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'

END

The surface plot generated by running this problem shows the
discontinuity in temperature:

66

5.3.2. Decoupling

Using the Contact Resistance model, one can effectively decouple the
values of a given variable in two adjacent regions. In the previous
example, if we replace the jump boundary condition with the statement

CONTACT(phi) = 0*JUMP(phi)

the contact resistance is infinite, and no flux can pass between the
regions.

[Note: The JUMP statement is recognized as a special form. Even
though the apparent value of the right hand side here is zero, it is not
removed by the arithmetic expression simplifier.]

67

5.3.3. Using JUMP in problems with many
variables

An expression JUMP(V) may appear in any boundary condition
statement on a boundary for which the argument variable V has been
given a CONTACT boundary condition.

In an electrical resistance case, for example, the voltage undergoes a
jump across a contact resistance, and the current through this contact is
a source of heat for a heatflow equation. The following example, though
not strictly realizable physically, diagrams the technique. Notice that the
JUMP of Phi appears as a source term in the Natural boundary condition
for Temp. Phi, having appeared in a CONTACT boundary condition
definition, is stored as a double-valued quantity, whose JUMP is
available to the boundary condition for Temp. Temp, which does not
appear in a CONTACT boundary condition statement, is a single-valued
variable at the interface.

TITLE 'Contact Resistance as a heat source'
VARIABLES

Phi { the voltage }
Temp { the temperature }

DEFINITIONS
Kd = 1 { dielectric constant }
Kt = 1 { thermal conductivity }
R = 0.5 { blob radius }
Q = 0 { space charge density }
Res = 0.5 { contact resistance }

EQUATIONS
Phi: Div(-kd*grad(phi)) = Q
Temp: Div(-kt*grad(temp) = 0

BOUNDARIES
REGION 1 'box'

START(-1,-1)
VALUE(Phi)=0 { grounded outer walls }
VALUE(Temp)=0 { cold outer walls }
LINE TO (1,-1) TO (1,1) TO (-1,1) TO CLOSE

REGION 2 'blob' { the embedded blob }
Q = 1 { space charge in the blob }
START 'ring' (R,0)
CONTACT(phi) = -JUMP(phi)/Res
{ the heat source is the voltage difference times the current }

68

NATURAL(temp) = -JUMP(Phi)^2/Res
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

PLOTS
CONTOUR(Phi) SURFACE(Phi)
CONTOUR(temp) SURFACE(temp)

END

The temperature shows the effect of the surface source:

69

6. Using FlexPDE in One-Dimensional
Problems

FlexPDE treats problems in one space dimension as a degenerate case
of two dimensional problems.
The construction of a problem descriptor follows the principles laid out in
previous sections, with the following specializations:

• The COORDINATES specification must be CARTESIAN1,

CYLINDER1 or SPHERE1
• Coordinate positions are given by one dimensional points, as in

START(0) LINE TO (5)
• The boundary path is in fact the domain, so boundary conditions are

not specified along the path. Instead we use the existing syntax of
POINT VALUE and POINT LOAD to specify boundary conditions at
the endpoints of the domain:

START(0) POINT VALUE(u)=0 LINE TO (5) POINT LOAD(u)=1
• Only ELEVATION and HISTORY are meaningful plots in one

dimension.

Our basic example problem does not have a one-dimensional analog,
but we can adapt it to an insulating spherical shell between two spherical
reservoirs as follows:

TITLE 'Heat flow through an Insulating shell'
COORDINATES
 Sphere1
VARIABLES

Phi { the temperature }
DEFINITIONS

K = 1 { default conductivity }
R1 = 1 { the inner reservoir }
Ra = 2 { the insulator inner radius }
Rb = 3 { the insulator outer radius }
R2 = 4 { the outer reservoir }

EQUATIONS
Div(-k*grad(phi)) = 0

BOUNDARIES
REGION 1 { the total domain }

70

START(R1) POINT VALUE(Phi)=0
LINE TO (R2) POINT VALUE(Phi)=1
{ note: no ‘Close’! }

REGION 2 'blob' { the embedded layer }
k = 0.001
START (Ra) LINE TO (Rb)

PLOTS
ELEVATION(Phi) FROM (R1) to (R2)

END

71

7. Using FlexPDE in Three-
Dimensional Problems

First, a caveat:
Three-dimensional computations are not simple. We have tried to make
FlexPDE as easy as possible to use, but the setup and interpretation of
3D problems relies heavily on the concepts explained in 2D applications
of FlexPDE. Please do not try to jump in here without reading the
preceding 2D discussion.

Extrusion:
FlexPDE constructs a three-dimensional domain by extruding a two-
dimensional domain into a third dimension. This third dimension can be
divided into layers, possibly with differing material properties and
boundary conditions in each layer. The interface surfaces which
separate the layers need not be planar, but there are some restrictions
placed on the shapes that can be defined in this way.

The finite element model constructed by FlexPDE in three-dimensional
domains is fully general. The domain definition process is not.

72

7.1. The Concept of Extrusion

The fundamental idea of extrusion is quite simple; a square extruded into
a third dimension becomes a cube; a circle becomes a cylinder. Given
spherical layer surfaces, the circle can also become a sphere.

[Note: It is important to consider carefully the characteristics of any
given problem, to determine the orientation most amenable to
extrusion.]

What happens if we extrude our simple 2D heat flow problem into a third
dimension? Setting the extrusion distance to half the plate spacing, we
get a cylinder imbedded in a brick, as we see in the following figure:

A cross-section at any value of Z returns the original 2D figure.

A cross-section cut at Y=0 shows the extruded structure:

73

74

7.2. Extrusion Notation in FlexPDE

Performing the extrusion above requires three basic changes in the 2D
script:

• The COORDINATES section must specify CARTESIAN3.
• A new EXTRUSION section must be added to specify the layering of

the extrusion.
• PLOTS and MONITORS must be modified to specify any cut planes or

surfaces on which the display is to be computed.

There are two forms for the EXTRUSION section, the elaborate form and
the shorthand form. In both cases, the layers of the model are built up in
order from small to large Z.

In the elaborate form, the dividing SURFACES and the intervening
LAYERS are each named explicitly, with algebraic formulas given for
each dividing surface.

[Note: With this usage, we have overloaded the word SURFACE. As
a plot command, it can mean a form of graphic output in which the
data are presented as a three-dimensional surface; or, in this new
case, it can mean a dividing surface between extrusion layers. The
distinction between the two uses should be clear from the context.]

In the simple case of our extruded cylinder in a square, it looks like this:

EXTRUSION
SURFACE 'Bottom' z=0
LAYER 'Everything'
SURFACE 'Top' z=1

The bottom and top surfaces are named, and given simple planar
shapes.
The layer between these two surfaces comprises everything in the
domain, so we can name it 'Everything'.

In the shorthand form, we merely state the Z-formulas:

EXTRUSION z = 0, 1

75

In this case, the layers and surfaces must later be referred to by number.
The first surface, z=0, is identified as "SURFACE 1". The second
surface, z=1, as "SURFACE 2".

Notice that there is no distinction, as far as the layer definition is
concerned, between the parts of the layer which are in the cylinder and
the parts of the layer which are outside the cylinder. This distinction is
made by combining the LAYER concept with the REGION concept of the
2D base plane representation. In a vertical cross-section we can label
the parts as follows:

Notice that the cylinder can be uniquely identified as the intersection of
the 'blob' region of the base plane with the 'Everything' layer of the
extrusion.

76

7.3. Layering

Now suppose that we wish to model a canister rather than a full length
cylinder. This requires that we break up the material stack above region
2 into three parts, the canister and the continuation of the box material
above and below it.

We do this by specifying three layers (and four interface surfaces):

EXTRUSION
SURFACE "Bottom" z=-1/2

LAYER "Underneath"
SURFACE "Can Bottom" z=-1/4

LAYER "Can"
SURFACE "Can Top" z=1/4

LAYER "Above"
SURFACE "Top" z=1/2

We have now divided the 3D figure into six logical compartments: three
layers above each of two base regions.

Each of these compartments can be assigned unique material
properties, and if necessary, unique boundary conditions.

The cross section now looks like this:

77

It would seem that we have nine compartments, but recall that region 1
completely surrounds the cylinder, so the left and right parts of region 1
above are joined above and below the plane of the paper. This results in
six 3D volumes, denoted by the six colors in the figure.

We stress at this point that it is neither necessary nor correct to try to
specify each compartment as a separate entity. You do not need a
separate layer and region specification for each material compartment,
and repetition of identical regions in the base plane or layers in the
extrusion will cause confusion.

The compartment structure is fully specified by the two coordinates
REGION and LAYER, and any compartment is identified by the
intersection of the REGION in the base plane with the LAYER in the
extrusion.

78

7.4. Setting Material Properties by Region
and Layer

In our 2D problem, we specified the conductivity of the blob inside the
REGION definition for the blob, and that continues to be the technique in
3D.

The difference now is that we must also specify the LAYER to which the
definition applies. We do this with a LAYER qualification clause:

REGION 2 'blob' { the embedded blob }

LAYER 'Can' K = 0.001
START 'ring' (R,0)
ARC(CENTER=0,0) ANGLE=360

Without the LAYER qualification clause, the definition would apply to all
layers lying above region 2 of the base plane. Here, the presence of the
parameter definition inside a REGION and qualified by a LAYER selects
a specific 3D compartment to which the specification applies.

In the following diagram, we have labeled each of the six distinct
compartment with a (region,layer) coordinate.

The comprehensive logical structure of parameter redefinitions in the
BOUNDARIES section with the location of parameter redefinition
specifications in this grid can be described for the general case as
follows:

BOUNDARIES

REGION 1

params(1,all)

79

{ parameter redefinitions for all layers of region 1 }
LAYER 1

params(1,1)
{ parameter redefinitions restricted to layer 1 of region 1 }

LAYER 2
params(1,2)
{ parameter redefinitions restricted to layer 2 of region 1 }

LAYER 3
params(1,3)
{ parameter redefinitions restricted to layer 3 of region 1 }

START(,) TO CLOSE { trace the perimeter }

REGION 2

params(2,all)
{ parameter redefinitions for all layers of region 2 }
LAYER 1

params(2,1)
{ parameter redefinitions restricted to layer 1 of region 2 }

LAYER 2
params(2,2)
{ parameter redefinitions restricted to layer 2 of region 2 }

LAYER 3
params(2,3)
{ parameter redefinitions restricted to layer 3 of region 2 }

START(,) TO CLOSE { trace the perimeter }

{ ... and so forth for all regions }

80

7.5. Void Compartments

The reserved word VOID is treated syntactically the same as a
parameter redefinition. If this word appears in any of the LAYER-
qualified positions above, then that (region,layer) compartment will be
excluded from the domain.

REGION 2 'blob' { the embedded blob }

LAYER 'Can' VOID
START 'ring' (R,0)
ARC(CENTER=0,0) ANGLE=360

The example problem "Samples | Misc | 3D_Domains | 3D_Void.pde"
demonstrates this usage.

81

7.6. Limited Regions

In what we have discussed so far, the region structure specified in the
2D base plane has been propagated unchanged throughout the
extrusion dimension. FlexPDE uses the specifier LIMITED REGION to
restrict the defined region to a specified set of layers and/or surfaces.

Instead of propagating throughout the extrusion dimension, a LIMITED
REGION exists only in the layers and surfaces explicitly referenced in
the declarations within the region. Mention of a layer causes the
LIMITED REGION to exist in the specified layer and in its bounding
surfaces. Mention of a surface causes the LIMITED REGION to exist in
the specified surface.

In our ongoing example problem, we can specify:

LIMITED REGION 2 'blob' { the embedded blob }
LAYER 'Can' K = 0.001
START 'ring' (R,0)
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

In this form, the cannister is not propagated through the "Above" and
"Underneath" layers:

82

83

7.7. Specifying Plots on Cut Planes

In two-dimensional problems, the CONTOUR, SURFACE, VECTOR,
GRID output forms display data values on the computation plane.

In three dimensions, the same displays are available on any cut plane
through the 3D figure. The specification of this cut plane is made by
simply appending the equation of a plane to the plot command, qualified
by 'ON':

PLOTS
CONTOUR(Phi) ON x=0

[Note: More uses of the ON clause, including plots on extrusion
surfaces, will be discussed later.]

We can also request plots of the computation grid (and by implication the
domain structure) with the GRID command:

GRID(x,z) ON y=0

This command will draw a picture of the intersection of the plot plane
with the tetrahedral mesh structure currently being used by FlexPDE.
The plot will be painted with colors representing the distinct material
properties present in the cross-section. 3D compartments with identical
properties will appear in the same color. The arguments of the GRID
plot are the values to be displayed as the abscissa and ordinate
positions. Deformed grids can be displayed merely by modifying the
arguments.

84

7.8. The Complete 3D Canister

With all the described modifications installed, the full script for the 3D
canister problem is as follows:

TITLE 'Heat flow around an Insulating Canister'
COORDINATES

Cartesian3
VARIABLES

Phi { the temperature }
DEFINITIONS

K = 1 { default conductivity }
R = 0.5 { blob radius }

EQUATIONS
Div(-k*grad(phi)) = 0

EXTRUSION
SURFACE 'Bottom' z=-1/2

LAYER 'underneath'
SURFACE 'Can Bottom' z=-1/4

LAYER 'Can'
SURFACE 'Can Top' z=1/4

LAYER 'above'
SURFACE 'Top' z=1/2

BOUNDARIES
REGION 1 'box'

START(-1,-1)
VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE

LIMITED REGION 2 'blob' { the embedded blob }
LAYER 2 k = 0.001 { the canister only }
START 'ring' (R,0)
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

PLOTS
GRID(y,z) ON x=0
CONTOUR(Phi) ON x=0
VECTOR(-k*grad(Phi)) ON x=0
ELEVATION(Phi) FROM (0,-1,0) to (0,1,0) { note 3D coordinates }

END

85

Since we have specified no boundary conditions on the top and bottom
extrusion surfaces, they default to zero flux. This is the standard default,
for reasons explained in an earlier section.

The first three of the requested PLOTS are:

86

87

7.9. Setting Boundary Conditions in 3D

The specification of boundary conditions in 3D problems is an extension
of the techniques used in 2D.

• Boundary condition specifications that in 2D applied to a bounding

curve are applied in 3D to the extruded sidewalls generated by that
curve.

• The qualifier LAYER <number> or LAYER <name> may be applied to
such a sidewall boundary condition to restrict its application to a
specific layer of the sidewall.

• Boundary conditions for extrusion surfaces are constructed as if they
were parameter redefinitions over a REGION or over the entire 2D
domain. In these cases, the qualifier SURFACE <number> or
SURFACE <name> must precede the boundary condition definition.

In the following figure, we have labeled the various surfaces which can
be assigned distinct boundary conditions. Layer interface surfaces have
been labeled with an "s", while sidewall surfaces have been labeled with
"w". We have shown only a single sidewall intersection in our cross-
sectional picture, but in fact each segment of the bounding trace in the
base plane can specify a distinct "w" type wall boundary condition.

The comprehensive logical structure of the BOUNDARIES section with
the locations of the boundary condition specifications in 3D can be
diagrammed as follows:

BOUNDARIES

88

SURFACE 1
s(all, 1) { boundary conditions on surface 1 over full domain }

SURFACE 2
s(all, 2) { boundary conditions on surface 2 over full domain }
{…other surfaces }

REGION 1
SURFACE 1

s(1,1) { boundary conditions on surface 1, restricted to region 1 }
SURFACE 2

s(1,2) { boundary conditions on surface 2, restricted to region 1 }
…

START(,) { -- begin the perimeter of region m }
w(1,..) { boundary conditions on following segments of sidewall
of region 1 on all layers }
LAYER 1

w(1,1) { boundary conditions on following segments of
sidewall of region 1, restricted to layer 1 }

LAYER 2
w(1,2) { boundary conditions on following segments of
sidewall of region 1, restricted to layer 2 }

…
LINE TO

{ segments of the base plane boundary with above BC's }
LAYER 1

w(1,1) { new boundary conditions on following segments of
sidewall of region 1, restricted to layer 1 }

…
LINE TO
{ continue the perimeter of region 1 with modified boundary
conditions }
TO CLOSE

REGION 2
SURFACE 1

s(2,1) { boundary conditions on surface 1, restricted to region 2 }
SURFACE 2

s(2,2) { boundary conditions on surface 2, restricted to region 2 }
…

START(,) { -- begin the perimeter of region m }
w(2,..) { boundary conditions on following segments of sidewall of
region 2 on all layers }
LAYER 1

w(2,1) { boundary conditions on following segments of sidewall
of region 2, restricted to layer 1 }

89

LAYER 2
w(2,2) { boundary conditions on following segments of sidewall
of region 2, restricted to layer 2 }

…
LINE TO
{ segments of the base plane boundary with above BC's }

LAYER 1

w(2,1) { new boundary conditions on following segments of
sidewall of region 2, restricted to layer 1 }
…

LINE TO
{ continue the perimeter of region 2 with modified boundary
conditions }
TO CLOSE

Remember that as in 2D, REGIONS appearing later in the script will
overlay and cover up portions of earlier regions in the base plane. So
the real extent of REGION 1 is that part of the base plane within the
perimeter of REGION 1 which is not contained in any later REGION.

For an example of how this works, suppose we want to apply a fixed
temperature "Tcan" to the surface of the canister of our previous
example. The canister portion of the domain has three surfaces, the
bottom, the top, and the sidewall.

The layer dividing SURFACES that define the bottom and top of the
canister are named 'Can Bottom' and 'Can Top'. The part we want to
assign is that part of the surfaces which lies above region 2 of the base
plane. We therefore put a boundary condition statement inside of the
region 2 definition, together with a SURFACE qualifier.

The sidewall of the canister is the extrusion of the bounding line of
REGION 2, restricted to that part contained in the layer named 'Can'. So
we add a boundary condition to the bounding curve of REGION 2, with a
LAYER qualifier.

The modified BOUNDARIES section then looks like this:

BOUNDARIES
REGION 1 'box'

START(-1,-1)

90

VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE

REGION 2 'blob' { the embedded blob }
SURFACE 'Can Bottom' VALUE(Phi)=Tcan
SURFACE 'Can Top' VALUE(Phi)=Tcan
{ parameter redefinition in the 'Can' layer only: }
LAYER 2 k = 0.001
START 'ring' (R,0)
{ boundary condition in the 'Can' layer only: }
LAYER 'Can' VALUE(Phi)=Tcan
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

91

7.10. Shaped Layer Interfaces

We have stated that the layer interfaces need not be planar. But
FlexPDE makes some assumptions about the layer interfaces, which
places some restrictions on the possible figures.

• Figures must maintain an extruded shape, with sidewalls and layer

interfaces (the sidewalls cannot grow or shrink)

• Layer interface surfaces must be continuous across region

boundaries. If a surface has a vertical jump, it must be divided into
layers, with a region interface at the jump boundary and a layer

spanning the jump. (Not this: but this:)

• Layer interface surfaces may merge, but may not invert. Use a MAX

or MIN function in the surface definition to block inversion.

Using these rules, we can convert the canister of our example into a
sphere by placing spherical caps on the cylinder.

The equation of a spherical end cap is

Z = Zcenter + sqrt(R^2 – x^2 – y^2)
Or,

Z = Ztop – R + sqrt(R^2 – x^2 – y^2)

• To avoid grazing contact of this new sphere with the top and bottom of

our former box, we will extend the extrusion from –1 to 1.
• To avoid arithmetic errors, we will prevent negative arguments of the

sqrt.

Our modified script now looks like this:

TITLE 'Heat flow around an Insulating Sphere'
COORDINATES

Cartesian3
VARIABLES

Phi { the temperature }
DEFINITIONS

92

K = 1 { default conductivity }
R = 0.5 { sphere radius }
{ shape of hemispherical cap: }
Zsphere = sqrt(max(R^2-x^2-y^2,0))

EQUATIONS

Div(-k*grad(phi)) = 0

EXTRUSION

SURFACE 'Bottom' z=-1
LAYER 'underneath'

SURFACE 'Sphere Bottom' z = -max(Zsphere,0)
LAYER 'Can'

SURFACE 'Sphere Top' z = max(Zsphere,0)
LAYER 'above'

SURFACE 'Top' z=1

BOUNDARIES

REGION 1 'box'
START(-1,-1)
VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE

LIMITED REGION 2 'blob' { the embedded blob }
LAYER 2 K = 0.001
START 'ring' (RSphere,0) ARC(CENTER=0,0) ANGLE=360
TO CLOSE

PLOTS
GRID(y,z) on x=0
CONTOUR(Phi) on x=0
VECTOR(-k*grad(Phi)) on x=0
ELEVATION(Phi) FROM (0,-1,0) to (0,1,0)

END

Cut-away and cross-section images of the LAYER x REGION
compartment structure of this layout looks like this:

93

The contour plot looks like this:

94

Notice that because of the symmetry of the 3D figure, this plot looks like
a rotation of the 2D contour plot in "Putting It All Together".

95

7.11. Integrals in Three Dimensions

In three-dimensional problems, volume integrals may be computed over
volume compartments selected by region and layer.

• Result = VOL_INTEGRAL(<integrand>)

Computes the integral of the integrand over the entire domain.

• Result = VOL_INTEGRAL(<integrand>, <region name>)

Computes the integral of the integrand over all layers of the
specified region.

• Result = VOL_INTEGRAL(<integrand>, <layer name>)

Computes the integral of the integrand over all regions of the
specified layer.

• Result = VOL_INTEGRAL(<integrand>, <region name>, <layer

name>)
Computes the integral of the integrand over the compartment
specified by the region and layer names.

• Result = VOL_INTEGRAL(<integrand>, <region number>, <layer

number>)
Computes the integral of the integrand over the compartment
specified by the region and layer numbers.

Surface integrals may be computed over selected surfaces. From the
classification of various qualifying names, FlexPDE tries to infer what
surfaces are implied in a surface integral statement. In the case of non-
planar surfaces, integrals are weighted by the actual surface area.

• Result = SURF_INTEGRAL(<integrand>)

Computes the integral of the integrand over the outer bounding
surface of the total domain.

• Result = SURF_INTEGRAL(<integrand>, <surface name> [,
<layer_name>])

Computes the integral of the integrand over all regions of the named
extrusion surface. If the optional <layer_name> appears, it will
dictate the layer in which the computation is performed.

96

• Result = SURF_INTEGRAL(<integrand>, <surface name>, <region

name> [, <layer_name>])
Computes the integral of the integrand over the named extrusion
surface, restricted to the named region. If the optional
<layer_name> appears, it will dictate the layer in which the
computation is performed.

• Result = SURF_INTEGRAL(<integrand>, <region name>, <layer
name>)

Computes the integral of the integrand over all surfaces of the
compartment specified by the region and layer names. Evaluation
will be made inside the named compartment.

• Result = SURF_INTEGRAL(<integrand>, <boundary name> [,
<region_name>])

Computes the integral of the integrand over all layers of the sidewall
generated by the extrusion of the named base-plane curve. If the
optional <region name> argument appears, it controls on which side
of the surface the integral is evaluated.Portions of the surface that
do not adjoin the named layer will not be computed.

• Result = SURF_INTEGRAL(<integrand>, <boundary name>, <layer
name> [, <region_name>])

Computes the integral of the integrand over the sidewall generated
by the extrusion of the named base-plane curve, restricted to the
named layer. If the optional <region name> argument appears, it
controls on which side of the surface the integral is evaluated.
Portions of the surface that do not adjoin the named layer will not be
computed.

[Note: The example problem "Samples | Misc | 3D_Integrals.pde"
demonstrates several forms of integral in a three-dimensional
problem.]

Let us modify our Canister problem to contain a heat source, and
compare the volume integral of the source with the surface integral of the
flux, as checks on the accuracy of the solution:

TITLE 'Heat flow from an Insulating Canister'
COORDINATES

Cartesian3

97

VARIABLES
Phi { the temperature }

DEFINITIONS
K = 1 { default conductivity }
R = 0.5 { blob radius }
S = 0

EQUATIONS
Div(-k*grad(phi)) = S

EXTRUSION
SURFACE 'Bottom' z=-1/2

LAYER 'underneath'
SURFACE 'Can Bottom' z=-1/4

LAYER 'Can'
SURFACE 'Can Top' z=1/4

LAYER 'above'
SURFACE 'Top' z=1/2

BOUNDARIES
REGION 1 'box'

START(-1,-1)
VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE

REGION 2 'blob' { option: could be LIMITED }
LAYER 2 k = 0.001 { the canister only }
S = 1 { still the canister }
START 'ring' (R,0)
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

PLOTS
GRID(y,z) on x=0
CONTOUR(Phi) on x=0
VECTOR(-k*grad(Phi)) on x=0
ELEVATION(Phi) FROM (0,-1,0) to (0,1,0)

SUMMARY
REPORT(Vol_Integral(S,'blob','can')) AS 'Source Integral'
REPORT(Surf_Integral(NORMAL(-k*grad(Phi),'blob','can')))

AS 'Can Heat Loss'
REPORT(Surf_Integral(NORMAL(-k*grad(Phi))))

AS 'Box Heat Loss'
REPORT(Vol_Integral(S,'blob','can')-Surf_Integral(NORMAL(-
k*grad(Phi))))

AS 'Energy Error'

98

END

The contour plot is as follows:

The summary page shows the integral reports:

[Note: The "Integral" reported at the bottom of the contour plot is the
default Area_Integral(Phi) reported by the plot procedure.]

99

7.12. More Advanced Plot Controls

We have discussed the specification of plots on cut planes in 3D. You
can, if you want, apply restrictions to the range of such plots, much like
the restrictions of integrals.

You can also specify plots on extrusion SURFACES (layer interface
surfaces), even though these surfaces may not be planar.

The basic control mechanism for plots is the ON <thing> statement.

For example, the statement

CONTOUR(Phi) ON 'Sphere Top' ON 'Blob'

requests a contour plot of the potential Phi on the extrusion surface
named 'Sphere Top', restricted to the region 'Blob'.

CONTOUR(NORMAL(-K*GRAD(Phi))) ON 'Sphere Top' ON 'Blob'
ON 'Can'

requests a contour plot of the normal component of the heat flux on the
top part of the sphere, with evaluation to be made within layer 'Can', i.e.,
inside the sphere.

• In general, the qualifier ON <name> will request a localization of the

plot, depending on the type of object names by <name>.
•
• The qualifier ON REGION <number> selects a region by number,

rather than by name.
•
• The qualifier ON SURFACE <number> selects a layer interface

surface by number, rather than by name.
•
• The qualifier ON LAYER <number> selects a layer by number, rather

than by name.

As an example, let us request a plot of the heat flux on the top of the
sphere, as shown above. We will add this command to the PLOTS
section, and also request an integral over the same surface, as a cross
check. The plot generator will automatically compute the integral over

100

the plot grid. This computation should give the same result as the
SURF_INTEGRAL, which uses a quadrature on the computation mesh.

CONTOUR(NORMAL(-K*GRAD(Phi))) ON 'Sphere Top' ON 'Blob'
ON 'Can'
REPORT(surf_integral(NORMAL(-k*GRAD(Phi)),'Sphere
Top','Blob','Can')) AS 'Surface Flux'

The result looks like this:

Since in this case the integral is a cancellation of values as large as 7e-
4, the reported value 9.6e-8 is well within the default error target of
ERRLIM=0.001. The plot grid integral, "Surf_Integral", shows greater
error at 8.96e-6, due to poorer resolution of integrating the area-weighted
function in the plot plane.

101

8. Moving Meshes

FlexPDE supports methods for moving the domain boundaries and
computation mesh during the course of a problem run.

The mechanisms for specifying this capability are simple extensions of
the existing script language. There are three parts to the definition of a
moving mesh:

• Declare a surrogate variable for each coordinate you wish to move:

VARIABLES
Xm = MOVE(x)

• Write equations for the surrogate variables:
EQUATIONS

dt(xm) = umesh
• Write boundary conditions for the surrogate variables:

BOUNDARIES
START (0,0) VELOCITY(xm) = umesh

The specification of ordinary equations is unaffected by the motion of the
boundaries or mesh. EQUATIONS are always presented in Eulerian
(Laboratory) form. FlexPDE symbolically applies motion correction terms
to the equations. The result of this approach is an Arbitrary
Lagrange/Eulerian (ALE) model, in which user has the choice of mesh
velocities:

• Locking the mesh velocity to a fluid velocity results in a Lagrangian

model. (FlexPDE has no mechanism for reconnecting twisted meshes,
so this model is discouraged in cases of violent motion).

• Specifying a mesh velocity different from the fluid velocity preserves
mesh integrity while still allowing deformation of the bounding surfaces
or following bulk motion of a fluid.

• If no mesh motion is specified, the result is an Eulerian model, which
has been the default in previous versions of FlexPDE.

102

8.1. Mesh Balancing

A convenient method for distributing the computation mesh smoothly
within a moving domain boundary is simply to diffuse the mesh velocity.

For example, suppose we change our basic example problem to model a
sphere of oscillating size Rm=0.5 + 0.25*sin(t).

We will define surrogate coordinates for X and Y and mesh velocity
variables:

VARIABLES
Phi
Xm = MOVE(x)
Ym = MOVE(y)
Um
Vm

The EQUATIONS for the mesh coordinates are simply the velocity
relations:

dt(Xm) = Um
dt(Ym) = Vm

For the mesh velocities we will use a diffusion equation to distribute the
velocities smoothly in the interior:

div(grad(Um)) = 0
div(grad(Vm)) = 0

The boundary condtions for mesh velocity on the blob are simply the
geometric rules

VALUE(Um) = 0.25*cos(t)*x/r
VALUE(Vm) = 0.25*cos(t)*y/r

Since the finite element equations applied at the boundary nodes are
averages over the cells, we must also apply the hard equivalence of
velocity to the mesh coordinates on the blob boundary

VELOCITY(Xm) = Um
VELOCITY(Ym) = Vm

103

8.2. The Pulsating Blob

The modified script for our example problem is now:

TITLE 'Heat flow around an Insulating blob'
VARIABLES

Phi { the temperature }
Xm = MOVE(x) { surrogate X }
Ym = MOVE(y) { surrogate Y }
Um { mesh x-velocity }
Vm { mesh y-velocity }

DEFINITIONS
K = 1 { default conductivity }
R0 = 0.5 { initial blob radius }

EQUATIONS
Phi: Div(-k*grad(phi)) = 0
Xm: dt(Xm) = Um
Ym: dt(Ym) = Vm
Um: div(grad(Um)) = 0
Vm: div(grad(Vm)) = 0

BOUNDARIES
REGION 1 'box'

START(-1,-1)
VALUE(Phi)=0
VELOCITY(Xm)=0 VELOCITY(Ym)=0
VALUE(Um)=0 VALUE(Vm)=0

LINE TO (1,-1)
NATURAL(Phi)=0

LINE TO (1,1)
VALUE(Phi)=1

LINE TO (-1,1)
NATURAL(Phi)=0

LINE TO CLOSE
REGION 2 'blob' { the embedded blob }

k = 0.001
START 'ring' (R,0)
VELOCITY(Xm) = Um
VELOCITY(Ym) = Vm

104

VALUE(Um) = 0.25*cos(t)*x/r
VALUE(Vm) = 0.25*cos(t)*y/r

ARC(CENTER=0,0) ANGLE=360 TO CLOSE
PLOTS

TIME 0 TO 2*pi
PLOTS

FOR T = pi/2 BY pi/2 TO 2*pi
CONTOUR(Phi)
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (0,-1) to (0,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'

END

The extremes of motion of this problem are shown below. See Help
system or online documentation for an animation.

105

9. Controlling Mesh Density

There are several mechanisms available for controlling the cell density in
the mesh created by FlexPDE.

Implicit Density

The cell density of the created mesh will follow the spacing of points in
the bounding segments. A very small segment in the boundary will
cause a region of small cells in the vicinity of the segment.

Maximum Density

The global command

SELECT NGRID = <number>

controls the maximum cell size. The mesh will be generated with
approximately NGRID cells in the largest dimension, and corresponding
size in the smaller dimension, subject to smaller size requirements from
other criteria.

Explicit Density Control

Cell density in the initial mesh may be controlled with the parameters
MESH_SPACING and MESH_DENSITY. MESH_SPACING controls the
maximum cell dimension, while MESH_DENSITY is its inverse,
controlling the minimum number of cells per unit distance. The mesh
generator examines many competing effects controlling cell size, and
accepts the smallest of these effects as the size of a cell. The
MESH_SPACING and MESH_DENSITY controls therefore have effect
only if they are the smallest of the competing influences, and a large
spacing request is effectively ignored.

The MESH_SPACING and MESH_DENSITY controls can be used with
the syntax of either defined parameters or boundary conditions.

Used as defined parameters, these controls may appear in the
DEFINITONS section or may be redefined in subsequent regional
redefinition sections. In this use, the controls specify the volume or area
mesh density over a region or over the entire domain.

106

For controlling the cell density along boundary segments, the controls
MESH_SPACING and MESH_DENSITY may be used with the syntax of
boundary conditions, and may appear wherever a boundary condition
statement may appear. In this usage, the controls specify the cell
spacing on the boundary curve or surface.

The value assigned to MESH_SPACING or MESH_DENSITY controls
may be functions of spatial coordinate. In the example of the chapter
"Generating a Mesh", we could write:

REGION 2 'blob' { the embedded 'blob' }
MESH_DENSITY = 50*EXP(-50*(x^2+y^2))
START(1/2,0)
ARC(CENTER=0,0) ANGLE=360

This results in the following initial mesh:

See also the example problems "Samples | Misc | Mesh_Control |
Mesh_Spacing.pde" and "Samples | Misc | Mesh_Control |
Mesh_Density.pde".

Adaptive Refinement

107

Once the initial mesh is constructed, FlexPDE will continue to estimate
the solution error, and will refine the mesh as necessary to meet the
target accuracy. In time dependent problems, an adaptive refinement
process will also be applied to the initial values of the variables, to refine
the mesh where the variables undergo rapid change. Whereas cells
created by this adaptive refinement process can later be re-merged,
cells created by the initial explicit density controls are permanent, and
cannot be un-refined.

[Note: The adaptive refinement process relies on evaluation of the
various sources and derivatives at discrete points within the existing
mesh. Sources or other effects which are of extremely small extent,
such as thin bands or point-like functions, may not be discernible in
this discrete model. Any effects of small extent should be brought to
the attention of the gridder by explicitly placing gridding features at
these locations. Use REGIONS or FEATURES wherever something
interesting is known to take place in the problem.]

See also the FRONT and RESOLVE statements for additional controls.

108

10. Exporting Data to Other
Applications

FlexPDE supports several mechanisms for exporting data to other
applications or visualization software.

The EXPORT Qualifier

The simplest method is to append the modifier "EXPORT" (or "PRINT")
to a plot command. In this case, the plot data will be written to a text file
in a predefined format suitable for importing to another FlexPDE problem
using the TABLE input function. For ELEVATIONS or HISTORIES, the
output will consist of a list of the times or X-, Y- or Z- coordinates of the
data followed by a list of the data values (see the discription of the
TABLE input function). For 2D plots, a regular rectangular grid will be
constructed, and the data written in TABLE input format.

The FORMAT String

The format of the text file created by the EXPORT modifier may be
controlled by the inclusion of the modifier FORMAT "string".

If this modifier appears together with the EXPORT or PRINT modifier,
then the file will contain one text line for each data point in the grid. The
contents of the line will be exactly that specified by the <string>.

• All characters except "#" will be copied literally into the output line.
• "#" will be interpreted as an escape character, and various options will

be selected by the character following the "#": #x, #y, #z and #t will
print the value of the spatial coordinates or time of the data point;

• #1 through #9 will print the value of the corresponding element of the
plot function list;

• #b will write a taB character;
• #r will cause the remainder of the format string to be repeated for each

plot function in the plot list;
• #i inside a repeated string will print the value of the current element of

the plot function list.
See the example problems "export_format" and "export_history".

109

In all cases of FORMATTED export, a header will be written containing
descriptive information about the origin of the file. This header will be
delimited by "{" and "}". In 2D grids, table points which are outside the
problem domain will also be bracketed by "{" and "}" and marked as
"exterior". If these commenting forms are unacceptable to the importing
application, then the data files must be manually edited before import.

TABLE Output

The TABLE plot command may also be used to generate tabular export.
This command is identical to a CONTOUR command with an EXPORT
qualifier, except that no graphical output is generated. The FORMAT
"string" qualifier may also be used with TABLE output.

Transferring Data to another FlexPDE problem

FlexPDE supports the capability of direct transfer of data defined on the
Finite Element mesh. The TRANSFER output function writes the current
mesh structure and the requested data values to an ASCII text file.
Another FlexPDE problem can read this file with the TRANSFER input
function. The transferred data will be interpolated on the output mesh
with the Finite Element basis of the creating problem. The TRANSFER
input mesh need not be the same as the computation mesh, as long as it
spans the necessary area.

The data format of the TRANSFER file is similar to the TECPLOT file
described below. The TRANSFER file, however, maintains the quadratic
or cubic basis of the computation, while the TECPLOT format is
converted to linear basis. Since this is an ASCII text file, it can also be
used for data transfer to user-written applications. The format of the
TRANSFER file is described in the Problem Descriptor Reference
chapter "Transfer File Format"

Output to Visualization Software

FlexPDE can export solution data to third-party visualization software.
Data export is requested by what is syntactically a PLOT command, with
the type of plot (such as CONTOUR) replaced by the format selector.
Two formats are currently supported, CDF and TECPLOT.

110

CDF

CDF(arg1 [,arg2,…]) selects output in netCDF version 3 format. CDF
stands for "common data format", and is supported by several software
products including SlicerDicer (www.visualogic.com). Information about
CDF, including a list of software packages supporting it, can be viewed
at the website www.unidata.ucar.edu/packages/netcdf .

CDF data are constrained to be on a regular rectangular mesh, but in the
case of irregular domains, parts of the rectangle can be absent. This
regularity implies some loss of definition of material interfaces, so
consider using a ZOOMed domain to resolve small features.

The CDF "plot" statement can be qualified by ZOOM or "ON SURFACE"
modifiers, and its density can be controlled by the POINTS modifier. For
global control of the grid size, use the statement "SELECT CDFGRID=n",
which sets all dimensions to n. The default gridsize is 50.

Any number of arguments can be given, and all will be exported in the
same file. The output file is by default "<problem>_<sequence>.cdf", but
specific filenames can be selected with the FILE modifier.

TECPLOT

TECPLOT(arg1 [,arg2,…]) selects output in TecPlot format. TecPlot is
a visualization package which supports finite element data format, and
so preserves the material interfaces as defined in FlexPDE. No ZOOM
or POINTS control can be imposed. The full computation mesh is
exported, grouped by material number. TecPlot can selectively enable
or disable these groups. Any number of arguments can be given, and all
will be exported in the same file. The output file is by default
"<problem>_<sequence>.dat", but specific filenames can be selected
with the FILE modifier.

Information about TecPlot can be viewed at www.amtec.com .

VTK

VTK(arg1 [,arg2,…]) selects output in Visual Tool Kit format. VTK is a
freely available library of visualization software, which is beginning to be
used as the basis of many visualization packages. The file format can
also be read by some visualization packages that are not based on VTK,

111

such as VisIt (www.llnl.gov/visit). The format preserves the mesh
structure of the finite element method, and so preserves the material
interfaces as defined in FlexPDE. No ZOOM or POINTS control can be
imposed. The full computation mesh is exported. Particular
characteristics of the visualization system are outside the control of
FlexPE. Any number of arguments can be given, and all will be exported
in the same file. The output file is by default
"<problem>_<sequence>.vtk", but specific filenames can be selected
with the FILE modifier.

The VTK format supports quadratic finite element basis directly, but not
cubic. To export from cubic-basis computations, use VTKLIN.

VTKLIN(arg1 [,arg2,…]) produces a VTK format file in which the native
cells of the FlexPDE computation have been converted to a set of linear-
basis finite element cells.

Information about VTK can be viewed at public.kitware.com/VTK/.

Examples:
Samples | Misc | Import-Export | Export.pde
Samples | Misc | Import-Export | Export_Format.pde
Samples | Misc | Import-Export | Export_History.pde
Samples | Misc | Import-Export | Transfer_Out.pde
Samples | Misc | Import-Export | Transfer_In.pde
Samples | Misc | Import-Export | Table.pde

Note:
Reference to products from other suppliers does not constitute an
endorsement by PDE Solutions Inc.

112

11. Solving Nonlinear Problems

FlexPDE automatically recognizes when a problem is nonlinear and
modifies its strategy accordingly. The solution method used by FlexPDE
is a modified Newton-Raphson iteration procedure. This is a "descent"
method, which tries to fall down the gradient of an energy functional until
minimum energy is achieved (i.e. the gradient of the functional goes to
zero). If the functional is nearly quadratic, as it is in simple diffusion
problems, then the method converges quadratically (the relative error is
squared on each iteration). The default strategy implemented in
FlexPDE is frequently sufficient to determine a solution without user
intervention. But in cases of strong nonlinearities, it may be necessary
for the user to help guide FlexPDE to a valid solution. There are several
techniques that can be used to help the solution process.

Time-Dependent Problems

In nonlinear time-dependent problems, the default behavior is to take a
single Newton step at each timestep, on the assumption that any
nonlinearities will be sensed by the timestep controller, and that timestep
adjustments will guarantee an accurate evolution of the system from the
given initial conditions. In this mode, the derivatives of the solution with
respect to the variables is computed once at the beginning of the
timestep, and are not updated.

Several selectors are provided to enable more robust (but more
expensive) treatment in difficult cases. The primary selector
PREFER_STABILITY allows up to three Newton iterations in each
timestep, with derivatives recomputed at each iteration. It also modifies
the error weighting scheme to place more emphasis on very localized
activity. PREFER_STABILITY resets the values of the NRUPDATE and
TNORM.

Steady-State Problems

In the case of nonlinear steady-state problems, the situation is somewhat
more complicated. We are not guaranteed that the system will have a
unique solution, and even if it does, we are not guaranteed that FlexPDE
will be able to find it.

113

Start with a Good Initial Value
Providing an initial value which is near the correct solution will aid
enormously in finding a solution. Be particularly careful that the initial
value matches the boundary conditions. If it does not, serious
excursions may be excited in the trial solution, leading to solution
difficulties.

Use STAGES to Gradually Activate the Nonlinear Terms
You can use the staging facility of FlexPDE to gradually increase the
strength of the nonlinear terms. Start with a nearly linear system, and
allow FlexPDE to find a solution which is consistent with the boundary
conditions. Then use this solution as a starting point for a more strongly
nonlinear system. By judicious use of staging, you can creep up on a
solution to very nasty problems.

Use artificial diffusion to stabilize solutions
Gibbs phenomena are observed in signal processing when a
discontinuous signal is reconstructed from its Fourier components. The
charactistics of this phenomenon is ringing, with overshoots and
undershoots in the recovered signal. Similar phenomena can be
observed in finite element models when a sharp transition is modeled
with an insufficient density of mesh cells. In signal processing, the signal
can be smoothed by use of a "window function". This is essentially a
low-pass filter that removes the high frequency components of the signal.
In partial differential equations, the diffusion operator Div(grad(u)) is a
low-pass filter that can be used to smooth oscillations in the solution.
See the Technical Note "Smoothing Operators in PDE's" for technical
discussion of this operator. In brief, you can use a term
eps*Div(Grad(u)) in a PDE to smooth oscillations of spatial extent D by
setting eps=D^2/pi^2 in steady state or eps=2*D*c/pi in time dependence
(where c is the signal propagation velocity). The term should also be
scaled as necessary to provide dimensional consistency with the rest of
the terms of the equation. Use of such a term merely limits the spatial
frequency components of the solution to those which can be adequately
resolved by the finite element mesh.

Use CHANGELIM to Control Modifications
The selector CHANGELIM limits the amount by which any nodal value in
a problem may be modified on each Newton-Raphson step. As in a one-
dimensional Newton iteration, if the trial solution is near a local maximum
of the functional, then shooting down the gradient will try to step an
enormous distance to the next trial solution. FlexPDE limits the size of

114

each nodal change to be less than CHANGELIM times the average value
of the variable. The default value for CHANGELIM is 0.5, but if the initial
value (or any intermediate trial solution) is sufficiently far from the true
solution, this value may allow wild excursions from which FlexPDE is
unable to recover. Try cutting CHANGELIM to 0.1, or in severe cases
even 0.01, to force FlexPDE to creep toward a valid solution. In
combination with a reasonable initial value, even CHANGELIM=0.01 can
converge in a surprisingly short time. Since CHANGELIM multiplies the
RMS average value, not each local value, its effect disappears when a
solution is reached, and quadratic final convergence is still achieved.

Watch Out for Negative Values
FlexPDE uses piecewise polynomials to approximate the solution. In
cases of rapid variation of the solution over a single cell, you will almost
certainly see severe under-shoot in early stages. If you are assuming
that the value of your variable will remain positive, don't. If your
equations lose validity in the presence of negative values, perhaps you
should recast the equations in terms of the logarithm of the variable. In
this case, even though the logarithm may go negative, the implied value
of your actual variable will remain positive.

Recast the Problem in a Time-Dependent Form
Any steady-state problem can be viewed as the infinite-time limit of a
time-dependent problem. Rewrite your PDE's to have a time derivative
term which will push the value in the direction of decreasing deviation
from solution of the steady-state PDE. (A good model to follow is the
time-dependent diffusion equation DIV(K*GRAD(U)) = DT(U). A
negative value of the divergence indicates a local maximum in the
solution, and results in driving the value downward.) In this case, "time"
is a fictitious variable analogous to the "iteration count" in the steady-
state N-R iteration, but the time-dependent formulation allows the
timestep controller to guide the evolution of the solution.

115

12. Getting Help

We're here to help.

Of course, we would rather answer questions about how to use FlexPDE
than about how to do the mathematical formulation of your problem.

FlexPDE is applicable to a wide range of problems, and we cannot be
experts in all of them.

If you have what appears to be a malfunction of FlexPDE, or if it is doing
something you don't understand or seems wrong,
• Send us an Email describing the problem.
• Attach a descriptor file that demonstrates the difficulty, and explain

clearly what you think is wrong.
• The more concise you can make your question, the more promptly we

will be able to answer.
• Tell us what version of FlexPDE you are using; your problem may

have been solved in a later release.

Send your enquiry to support@pdesolutions.com and we will answer
as soon as we can, usually within a day or two.

116

Index
Accuracy.................................31
Application................................7
ARC..17
AREA_INTEGRAL33
BINTEGRAL...........................33
BOUNDARIES................... 8, 17
boundary conditions10
Boundary conditions...............24
Boundary Conditions in 3D87
case sensitivity15
CDF..................................... 108
CHANGELIM..........................56
Contact Resistance63
CONTOUR26
Curl Theorem59
Decoupling Variables66
DEFINITIONS.................... 8, 22
Differentiation15
Discontinuous Variables.........63
Divergence Theorem..............59
Domain Description................17
Eigenvalue Summary51
ELEVATION26
EQUATIONS 8, 16
ERRLIM..................................31
error tolerance........................31
EXPORT.............................. 108
Extrusion72
EXTRUSION74
Extrusion Notation..................74
finite element mesh20
Flux Boundary Condition........61
FORMAT 108
guidelines13
Heat Equation59
Inconsistent Initial Conditions.47
Initial Conditions.....................47
initial value..............................56
INITIAL VALUES....................56
INITIALVALUES.......................8
Instantaneous Switching47

INTEGRAL33
Integrals33, 40
Integrals in Three Dimensions95
integration by parts59
JUMP63, 67
LAYER74
Layer Interfaces91
Layering76
LINE17
LINE_INTEGRAL33
Magnetic Field........................59
material parameters22
Material Properties.................78
mesh20
Mesh Density105
MONITORS............................26
NATURAL10
Natural boundary condition59
NATURAL boundary condition

..24
Newton-Raphson iteration56
nonlinear problems56
Nonlinear Problems112
Notation..................................15
ON..99
ON LAYER.............................99
ON REGION...........................99
ON SURFACE........................99
Parameter Studies37
parameters22
PLOTS8, 26
plots on cut planes99
problem setup11
Problem Setup Guidelines13
problem solving environment ...2
questions..............................115
REGION.................................17
REPORT35
script editing module5
scripting language....................2
SELECT8

117

Shaped Layer Interfaces91
STAGED.................................37
STAGES.................................37
START....................................17
SUMMARY...................... 36, 51
SURFACE 26, 74
surface integrals.....................95
symbolic equation analyzer......5
TABLE Output 108
TECPLOT............................ 108
TITLE..8

Transferring Data108
VALUE10
VALUE (or Dirichlet) boundary

condition24
VARIABLES8, 16
VECTOR26
VisIt108
Void Compartments80
VOL_INTEGRAL....................33
volume integrals.....................95
VTK108

