

FlexPDE
Reference

Version 5
5/25/05

Copyright ©2005 PDE Solutions Inc.

© 2005 PDE Solutions Inc.

Complying with all copyright laws is the responsibility of the user.
Without limiting the rights under copyright, no part of this document may
be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical,
photocopying, or otherwise) without the express written permission of
PDE Solutions Inc.

PDE Solutions may have patents, patent applications, trademarks, and
copyrights or other intellectual property rights covering subject matter in
this document. Except as provided in any written license agreement
from PDE Solutions Inc., the furnishing of this document does not give
you any license to these patents, trademarks, copyrights or other
intellectual property.

PDE Solutions, and FlexPDE are either registered trademarks or
trademarks of PDE Solutions Inc. in the United States and/or other
countries.

Table of Contents

1. Foreword ...1
2. Introduction ...2

2.1. Preparing a Descriptor File...3
2.2. File Names and Extensions..4
2.3. Problem Descriptor Structure ...4
2.4. Problem Descriptor Format ..5
2.5. Case Sensitivity ..6
2.6. "Include" Files...6
2.7. A Simple Example ..7

3. The Elements of a Descriptor..10
3.1. Comments ..10
3.2. Reserved Words and Symbols...11
3.3. Separators ..12
3.4. Literal Strings..13
3.5. Numeric Constants ...14
3.6. Built-in Functions ..14

3.6.1. Analytic Functions..15
3.6.2. Non-Analytic Functions..15
3.6.3. Unit Functions ..17
3.6.4. String Functions ...17
3.6.5. The FIT Function..18
3.6.6. The LUMP Function...19
3.6.7. The RAMP Function...19
3.6.8. The SAVE Function ...20
3.6.9. The SUM Function...21
3.6.10. The SWAGE Function..22
3.6.11. The VAL and EVAL functions ..23

3.7. Operators..23
3.7.1. Arithmetic Operators ..23
3.7.2. Relational Operators ..24
3.7.3. String Operators...24
3.7.4. Vector Operators..25
3.7.5. Differential Operators...26
3.7.6. Integral Operators ..28

3.8. Predefined Elements ..32
3.9. Expressions ..33
3.10. Repeated Text ..34

4. The Sections of a Descriptor...37
4.1. Title ...37
4.2. Select..37

4.2.1. Mesh Generation Controls...38
4.2.2. Solution Controls..39
4.2.3. Global Graphics Controls...44

 iv

4.3. Coordinates ..47
4.4. Variables...49

4.4.1. The THRESHOLD Clause ...49
4.4.2. Moving Meshes..50
4.4.3. The SIMPLEX Modifier ..51

4.5. Global Variables ...51
4.6. Definitions...52

4.6.1. ARRAY Definitions...53
4.6.2. Parameterized Definitions..54
4.6.3. STAGED Definitions ..55
4.6.4. POINT Definitions ..56
4.6.5. Data Import Definitions ..57
4.6.6. The PASSIVE Modifier...63
4.6.7. Mesh Control Parameters..64

4.7. Initial Values ...65
4.8. Equations..66

4.8.1. Association between Equations, Variables and Boundary
Conditions ..67
4.8.2. Modal Analysis and Associated Equations............................67
4.8.3. Moving Meshes..68

4.9. Constraints ...69
4.10. Extrusion...70
4.11. Boundaries ...71

4.11.1. Points ...72
4.11.2. Boundary Paths ...72
4.11.3. Regions..74
4.11.4. Excludes ..79
4.11.5. Features...80
4.11.6. Ordering Regions...80
4.11.7. Numbering Regions ...81
4.11.8. Fillets and Bevels...81
4.11.9. Boundary Conditions..82
4.11.10. Fixed Points ...90

4.12. Front ...90
4.13. Resolve...91
4.14. Time..92
4.15. Monitors and Plots..93

4.15.1. Graphics Display and Data Export Specifications94
4.15.2. Graphic Display Modifiers..97
4.15.3. Controlling the Plot Domain ...104
4.15.4. Reports ..107
4.15.5. Window Tiling...107
4.15.6. Monitors in Steady State Problems108

 v

4.15.7. Monitors and Plots in Time Dependent Problems108
4.15.8. Hardcopy..109
4.15.9. Graphics Export ...109
4.15.10. Examples ...110

4.16. Histories..110
4.17. End ...111

5. Batch Processing ..112
6. Running FlexPDE from the Command Line......................................113

1. Foreword

This document presents a detailed description of the components of
FlexPDE problem descriptors. No attempt is made here to give tutorial
explanations of the use of these components. See the companion
volumes "Getting Started" for user interface information and "User
Guide" for tutorial guidance in the use of FlexPDE.

 2

2. Introduction

FlexPDE is a script-driven system. It reads a description of the
equations, domain, auxiliary definitions and graphical output requests
from a text file referred to as a "problem descriptor" or "script".

The problem descriptor file can be created either with the editor facility in
FlexPDE, or with any other ASCII text editor. A word processor can be
used only if there is an optional "pure text" output, in which formatting
codes have been stripped from the file.

Problem descriptors use an easy to learn natural language originally
developed by Robert G. Nelson. The language is also described in Dr.
Gunnar Backstrom's book, "Fields of Physics by Finite Element Analysis
- An Introduction". The language has been used in the PDS2 system at
Lawrence Livermore National Lab and in the PDEase2 system.

As FlexPDE has evolved, a number of extensions have been added to
extend its processing capabilities. The language as currently
implemented in FlexPDE is described in this document.

While similar in some ways to a computer programming language, the
natural language used in problem descriptors is much simpler. Most
intermediate level college students, engineers, and scientists who have
had at least an introductory course in partial differential equations can
sufficiently master the language in less than an hour to prepare simple
problem descriptor files and begin solving problems of their own
devising.

The FlexPDE problem descriptor language can be viewed as a
shorthand language for creating Finite Element models. The statements
of the descriptor provide the information necessary for FlexPDE to
assemble a numerical process to solve the problem.

It is important to understand that the language of FlexPDE problem
descriptors is a relational language, not a procedural one. The user
describes how the various components of the system relate to one
another. He does not describe a sequence of steps to be followed in
forming the solution, as would be done in a language such as C. Based
on the relations between problem elements, FlexPDE decides on the
sequence of steps needed in finding the solution.

 3

FlexPDE makes various assumptions about the elements of the problem
descriptor.

For example, if a variable is named in the VARIABLES section, it is
assumed

• that this variable is a scalar field which takes on values over the
domain of the problem,

• that it will be approximated by a finite element interpolation between
the nodes of a computation mesh,

• that the values of the variable are continuous over the domain, and
• that a partial differential equation will be defined describing the

behavior of the variable.

If a definition appears in the DEFINITIONS section, it is assumed that the
named quantity

• is ancillary to the PDE system,
• that it may be discontinuous over the domain,
• that it does not (necessarily) obey any PDE.

In the chapters that follow, we describe in detail the rules for constructing
problem descriptors.

2.1. Preparing a Descriptor File

Problem descriptor files for use with FlexPDE are most easily prepared
and edited using FlexPDE's built-in editor.

To begin a new descriptor file, simply click "File | New Script" from the
FlexPDE main menu bar.

To edit an existing descriptor, click "File | Open Script" instead.

A convenient way to create a new descriptor is to start with a copy of an
existing descriptor for a similar problem and to modify it to suit the new
problem conditions.

FlexPDE's built-in editor is similar to the Windows Notepad editor and
produces a pure ASCII text file without any imbedded formatting
characters. Descriptor files can also be prepared using any ASCII text

 4

editor or any editor capable of exporting a pure ASCII text file.
Descriptor files prepared with word processors that embed formatting
characters in the text will cause FlexPDE to report parsing errors.

The built-in editor in FlexPDE uses syntax highlighting to enhance the
readability of the user's script. Recognized keywords are displayed in
red, comments in green, and text strings in blue.

2.2. File Names and Extensions

A problem descriptor file can have any name which is consistent with the
host operating system.

Even though permitted by some operating systems, names with
imbedded blank characters should be avoided.

It is best to choose a name that is descriptive of the problem.

Problem descriptor files must have the extension '.pde'.

When saving a file using FlexPDE's built-in editor, FlexPDE will
automatically add the extension '.pde'.

When using a separate or off-line editor, be sure to give the file a '.pde'
extension instead of the default extension.

2.3. Problem Descriptor Structure

Problem descriptors organize a problem by breaking it into sections of
related items.

Each section is headed by a proper name followed by one or more
statements which define the problem.

The permitted section names are:

 5

TITLE - defines the problem title
SELECT - sets various options and controls
COORDINATES - defines the coordinate system
VARIABLES - names the problem variables
DEFINITIONS - defines ancillary quantities and parameters
INTIAL VALUES - sets initial values of variables
EQUATIONS - defines the partial differential equation

system
CONSTRAINTS - defines optional integral constraints
EXTRUSION - extends the domain to three dimensions
BOUNDARIES - describes the 2D or projected 3D domain
RESOLVE - optionally supplements mesh control
FRONT - optionally supplements mesh control for

advancing fronts
TIME - defines the time domain
MONITORS - selects interim graphic display
PLOTS - selects final graphic display
HISTORIES - selects time-summary displays
END - identifies the end of the descriptor

The number of sections used in a particular problem descriptor can vary,
subject only to the requirement that all files must contain a Boundaries
section and an End section.

While some flexibility exists in the placement of these sections, it is
suggested that the user adhere to the ordering described above.

DEFINITIONS and SELECT can appear more than once.

Because descriptors are dynamically processed from top to bottom, they
cannot contain forward references. Definitions may refer to variables and
other defined names, provided these variables and names have been
defined in a preceding section or previously in the same section.

2.4. Problem Descriptor Format

While not strictly required, we suggest use of the following indentation
pattern for all problem descriptors:

 6

section 1

statement
section 2

statement 1
statement 2

*
*

section 3
statement 1
statement 2

*
*

This format is easy for both the person preparing the file and for others to
read and understand.

2.5. Case Sensitivity

With the exception of quoted character strings, which are reproduced
exactly as they appear in a problem descriptor, words, characters and
other text items used in problem descriptors are NOT case sensitive.

Upper case letters and lower case letters are equivalent.

The text items variables, VARIABLES, Variables and mixed case
text like VaRiAbles are all equivalent.

2.6. "Include" Files

FlexPDE supports the C-language mechanism of including external files
in the problem descriptor. The statement

#INCLUDE "filename"

 7

will cause the named file to be included bodily in the descriptor in place
of the #INCLUDE "filename" statement.

If the file does not reside in the same folder as the descriptor, the full
path to the file must be given.

An include statement can be placed anywhere in the descriptor, but for
readability it should be placed on its own line.

This facility can be used to insert common definition groups in several
descriptors.

Note: Although FlexPDE is not case sensitive, the operating system
which is being asked for the included file may be
case sensitive. The quoted file name must conform to the usage of the
operating system.

2.7. A Simple Example

As a preview example to give the flavor of a FlexPDE descriptor file, we
will construct a model of heatflow on a square domain.

The heatflow equation is

 div(K*grad(Temp)) + Source = 0

This equation is satisfied by the function

 Temp = Const - x^2 - y^2

as long as K is constant and Source = 4*K.

We define a square region of material of conductivity K = 1, with a
uniform heat source of 4 heat units per unit area.

We further specify the boundary value

 Temp = 1 - x^2 - y^2

 8

Since we know the analytic solution, we can compare the accuracy of the
FlexPDE solution.

The text of the descriptor is as follows:

{ ***
SIMPLE.PDE
This sample demonstrates the simplest application of FlexPDE
to
heatflow problems.

*** }

TITLE "Simple Heatflow"

VARIABLES

temp { Identify "Temp" as the system variable }

DEFINITIONS

k = 1 { declare and define the conductivity }
source = 4 { declare and define the source }
texact = 1-x^2-y^2 { exact solution for reference }

INITIAL VALUES

temp = 0 { unimportant in linear steady-state problems,
 but necessary for time-dependent or nonlinear
 systems }

 { define the heatflow equation :}
EQUATIONS

div(k*grad(temp)) + source = 0

 { define the problem domain: }
BOUNDARIES

REGION 1 { ... only one region }
{ specify Dirichlet boundary at exact solution: }
VALUE(temp)=texact
START(-1,-1) { specify the starting point }
LINE TO (1,-1) { walk the boundary }

TO (1,1)
TO (-1,1)
TO CLOSE { bring boundary back to starting point }

 9

MONITORS

CONTOUR(temp) { show the Temperature during solution }

PLOTS { write these plots to disk at completion: }

CONTOUR(temp) { show the solution }
SURFACE(temp) { show a surface plot as well }
 { display the solution error :}
CONTOUR(temp-texact) AS "Error"
 { show a vector flow plot: }
VECTOR(-dx(temp),-dy(temp)) AS "Heat Flow"

END { end of descriptor file }

 10

3. The Elements of a Descriptor

The problem descriptors or 'scripts' which describe the characteristics of
a problem to FlexPDE are made up of a number of basic elements, such
as names and symbols, reserved words, numeric constants, etc. These
elements are described in the sections that follow.

3.1. Comments

Problem descriptors can be annotated by adding comments.

Multi-line comments can be placed anywhere in the file. Multi-line
comments are formed by enclosing the desired comments in either curly
brackets { and } or the paired symbols /* and */. Comments can be
nested, but comments that begin with a curly bracket must end with a
curly bracket and comments that begin with '/*' must end with '*/'.

Example:
{ this is a comment
so is this.
}

End-of-line comments are introduced by the exclamation mark !. End-of-
line comments extend from the ! to the end of the line on which they
occur. Placing the line comment symbol ! at the beginning of a line
effectively removes the whole line from the active portion of the problem
descriptor, in a manner similar to 'rem' at the beginning of a line in a DOS
batch file or "//" in C++.

Example:
! this is a comment
this is not

Comments can be used liberally during script development to temporarily
remove lines from a problem descriptor. This aids in localizing errors or
focusing on specific aspects of a problem.

 11

3.2. Reserved Words and Symbols

FlexPDE assigns specific meanings and uses to a number of predefined
'reserved' words and symbols in descriptors.
Except when they are included as part of a comment or a literal string,
these words may only be used for their assigned purpose.

ABS ALIAS AND
ANGLE ARC ARCCOS
ARCSIN ARCTAN AS
AT ATAN2
BESSJ BESSY BINTEGRAL
BOUNDARIES BY
CDF CENTER CLOSE
CONIC CONSTRAINTS CONTOUR
COORDINATES COS COSH
CROSS CURL
DEBUG DEFINITIONS DEGREES
DEL2 DELTAT DIFF
DIR DIRECTION DIV
DNORMAL DOT DTANGENTIAL
ELEVATION ELSE END
ENDTIME EQUATIONS ERF
ERFC EXCLUDE EXP
EXPINT EXPORT EXTRUSION
FEATURE FILE FINISH
FIT FIXED FOR
FROM
GAMMAF GLOBALMAX GLOBALMIN
GRAD GRID
HISTORIES HISTORY
IF INITIAL INTEGRAL
INTEGRATE INTSTRING
JACOBIAN JUMP
LAMBDA LAYER LAYERED
LIMITED LINE LIST
LN LOAD LOG10
MAGNITUDE MAX MESH_DENSITY
MESH_SPACING MIN MOD
MONITORS MOVE
NATURAL NEUMANN NORMAL

 12

NOT
OFF ON OR
PERIODIC
PI PLOTS POINT
PRINT PRINTONLY
RADIANS RADIUS RAMP
REGION REPEAT REPORT
RESOLVE
SCALAR SELECT SIGN
SIMPLEX SIN SINH
SPLINE SPLINETABLE SPLINETABLEDEF
SQRT STAGE STAGED
START SUM SUMMARY
SURFACE SWAGE
TABLE TAN TANGENTIAL
TANH TECPLOT THEN
TIME TITLE TO
THRESHOLD TRANSFER TRANSFERMESH
UNORMAL UPULSE URAMP
USTEP
VAL VALUE VALUES
VARIABLES VECTOR VELOCITY
VERSUS VIEWANGLE VIEWPOINT
VOID VTK VTKLIN
XCOMP
YCOMP
ZCOMP ZOOM

3.3. Separators

White Space
Spaces, tabs, and new lines, frequently referred to as "white space", are
treated as separators and may be used freely in problem descriptors to
increase readability. Multiple white spaces are treated by FlexPDE as a
single white space.

Commas
Commas are used to separate items in a list, and should be used only
where explicitly required by the descriptor syntax.

Semicolons

 13

Semicolons are reserved to signify the end of a label or statement when
it is not otherwise clear where the label or statements ends. If, while
parsing equations in a problem descriptor, FlexPDE encounters two
mathematical quantities separated by a white space without an
intervening mathematical operator it will interpret this to mean that one
equation has ended and another equation is about to begin. If, on the
other hand, FlexPDE encounters two mathematical quantities with an
intervening mathematical operator it will interpret this to mean a
continuation of the equation even if the terms are placed on separate
lines. If a new equation beginning with a mathematical operator (such
as the negation operator '-') follows another equation, the first equation
must be terminated with a semicolon to keep FlexPDE from interpreting
the two equations as one equation.

3.4. Literal Strings

Literal strings are used in problem descriptors to provide optional user
defined labels, which will appear on softcopy and hardcopy outputs.

The label that results from a literal string is reproduced on the output
exactly (including case) as entered in the corresponding literal string.

Literal strings are formed by enclosing the desired label in either single
or double quote marks . Literal strings that begin with a double quote
mark must end in a double quote mark, and literal strings that begin with
a single quote mark must end in a single quote mark.

A literal string may consist of any combination of alphanumeric
characters, separators, reserved words, and/or symbols including quote
marks, provided only that strings that begin with a double quote mark
may contain only single quote marks and strings that begin with a single
quote mark may contain only double quote marks.

Example:
TITLE "This is a literal 'string' used as a problem title"

 14

3.5. Numeric Constants

Integers
Integers must be of the form XXXXXX where X is any decimal digit from
0 to 9. Integer constants can contain up to 9 digits.

Decimal Numbers
Decimal numbers must be of the form XXXXX.XXX where X is any
decimal digit from 0 to 9 and '.' is the decimal separator. Decimal
numbers must not include commas ','. Using the European convention of
a comma ',' as a decimal separator will result in an error. Commas are
reserved as item separators. Decimal numbers may include zero to nine
digits to the left of the decimal separator and up to a total of 308 digits
total. FlexPDE considers only the first fifteen digits as significant.

Engineering Notation Numbers
Engineering notation numbers must be of the form XXXXXEsYYY where
X is any digit from 0 to 9 or the decimal separator '.', Y is any digit from 0
to 9, E is the exponent separator, and s is an optional sign operator.
Engineering notation numbers must not include commas ','. Using the
European convention of a comma ',' as a decimal separator will result in
an error. Commas are reserved as item separators. The number to the
left of the exponent separator is treated as a decimal number and the
number to the right of the exponent separator is treated as an integer
and may not contain a decimal separator or more than 3 digits. The
range of permitted engineering notation numbers is 1e-307 to 1e308.

3.6. Built-in Functions

Functions and Arguments
All function references must include at least one argument. Arguments
can be either numerical constants or expressions that evaluate to
numerical values. The following functions are supported in problem
descriptors:

 15

3.6.1. Analytic Functions

The following analytic functions are supported by FlexPDE:

Function Comments
ABS(x) Absolute value
ARCCOS(x) returns radians
ARCSIN(x) "
ARCTAN(x) "
ATAN2(y,x) Arctan(y/x)
BESSJ(order,x) Bessel Function J
BESSY(order,x) Bessel Function Y
COS(x) x is angle in radians *
COSH(x) Hyperbolic cosine
ERF(x) Error Function
ERFC(x) Complementary Error Function
EXP(x) Exponential function
EXPINT(x) Exponential Integral Ei(x) for real x>0 **
EXPINT(n,x) Exponential Integral En(x) for n>=0, real x>0 **
GAMMAF(x) Gamma function for real x>0
GAMMAF(a,x) Incomplete gamma function for real a>0, x>0
LOG10(x) Base-10 logarithm
LN(x) Natural logarithm
SIN(x) x is angle in radians *
SINH(x) Hyperbolic sine
SQRT(x)
TAN(x) x is angle in radians *
TANH(x) Hyperbolic tangent

* Use for example COS(x DEGREES) to convert arguments to radians.
** as defined in Abramowitz & Stegun, "Handbook of Mathematical
Functions".

Examples:
 see Samples | Misc | Funtest.pde

3.6.2. Non-Analytic Functions

The following non-analytic functions are supported in FlexPDE:

 16

MAX(arg1,arg2)
The maximum function requires two arguments. MAX is evaluated on
a point by point basis and is equal to the larger of the two arguments
at each point.

MIN(arg1,arg2)

The minimum function requires two arguments. MIN is evaluated on a
point by point basis and is equal to the lessor of the two arguments at
each point.

MOD(arg1,arg2)

The modulo function requires two arguments. MOD is evaluated on a
point by point basis and is equal to the remainder of (arg1/arg2) at
each point.

GLOBALMAX(arg)

The global maximum function requires one argument. GLOBALMAX
is equal to the largest value of the argument over the problem domain.
GLOBALMAX is tabulated and re-evaluated when components of the
argument change.

GLOBALMAX_X(arg)
GLOBALMAX_Y(arg)
GLOBALMAX_Z(arg)

The specified coordinate of the global maximum is returned. Global
searches are tabulated by argument expression, and repeated calls to
GLOBALMAX and its related coordinates do not cause repeated
evaluation.

GLOBALMIN(arg)

The global minimum function requires one argument. GLOBALMIN is
equal to the smallest value of the argument over the problem domain.
GLOBALMIN is tabulated and re-evaluated when components of the
argument change.

GLOBALMIN_X(arg)
GLOBALMIN_Y(arg)
GLOBALMIN_Z(arg)

The specified coordinate of the global minimum is returned. Global
searches are tabulated by argument expression, and repeated calls to
GLOBALMIN and its related coordinates do not cause repeated
evaluation.

 17

RANDOM(arg)
The random function requires one argument. The result is a pseudo-
random number uniformly distributed in (0,arg). The only reasonable
application of the RANDOM function is in initial values. Use in other
contexts will probably result in convergence failure.

SIGN(arg)

The sign function requires one argument. SIGN is equal to 1 if the
argument is positive and -1 if the argument is negative.

3.6.3. Unit Functions

The following unit-valued functions are supported in FlexPDE:

USTEP(arg)

The unit step function requires one argument. USTEP is 1 where the
argument is positive and 0 where the argument is negative. For
example, USTEP(x-x0) is a step function at x=x0.

UPULSE(arg1,arg2)

The unit pulse function requires two arguments. UPULSE is 1 where
arg1 is positive and arg2 is negative and 0 everywhere else.
UPULSE(t-t0, t-t1) is a pulse from t0 to t1 if t1>t0.

URAMP(arg1,arg2)

The unit ramp function requires two arguments. URAMP is like
UPULSE, except it builds a ramp instead of a rectangle..

Examples:
Samples | Misc | Ufuntest.pde

3.6.4. String Functions

FlexPDE provides minimal support for dynamically constructing text
strings.

$integer (i.e. <dollar> integer)

This function returns a text string representing the integer value
integer. This function may be used in conjunction with the

 18

concatenation operator "+" to build boundary or region names. For
example

REPEAT i=1 to 4 do
 START "LOOP"+$i (x,y)

<path_info>...
ENDREPEAT

This is equivalent to

START "LOOP1" (x,y) <path_info> ...
START "LOOP2" (x,y) <path_info> ...
START "LOOP3" (x,y) <path_info> ...
START "LOOP4" (x,y) <path_info> ...

Example:

See "Samples | Misc | ArrayRepeat.pde"

3.6.5. The FIT Function

The following two forms may be used to compute a finite-element
interpolation of an arbitrary argument:

result = FIT(expression)

computes a Finite Element fit of the given expression using the current
computational mesh and basis. Nodal values are computed to return the
correct integral over each mesh cell.

result = FIT(expression,weight)

as with FIT(expression), but with a smoothing diffusion with coefficient
equal to weight (try 0.1 or 1.0, and modify to suit).

weight may be an arbitrary expression, involving spatial coordinates,
time, or variables of the computation. In this way it can be used to
selectively smooth portions of the mesh. The value of weight has a
well-defined meaning: it is the spatial wavelength over which variations
are damped: spatial variations with wavelength much smaller than
weight will be smoothed, while spatial variations with wavelength much
greater than weight will be relatively unmodified.

 19

Note: FIT() builds a continuous representation of the data across the
entire domain, and cannot preserve discontinuities in the fitted data. In
some cases, multiplying the data by an appropriate material parameter
can result in a continuous function appropriate for fitting.

FIT() may be used to smooth noisy data, to block ill-behaved functions
from differentiation in the derivative computation for Newton's method, or
to avoid expensive re-computation of complex functions.

See also the SAVE function, in which nodal values are directly
computed.

Example:

Samples | Misc | fitweight.pde

3.6.6. The LUMP Function

The LUMP function creates a field on the finite element mesh, and saves
a single value of the argument expression in each cell of the finite
element mesh. The value stored for each cell is the average value of the
argument expression over the cell, and is treated as a constant over the
cell.

The LUMP function may be used to block ill-behaved functions from
differentiation in the derivative computation for Newton's method, or to
avoid expensive re-computation of complex functions.

The normal use for LUMP is in the DEFINITIONS section, as in

name = LUMP (expression)

Example:

Samples | Misc | lump.pde

3.6.7. The RAMP Function

The RAMP function is a modification of the URAMP function, intended to
make the usage more nearly like an IF..THEN statement.

It has been introduced to provide an alternative to discontinuous
functions like USTEP and the discontinuous IF..THEN construct.

 20

Discontinuous switching can cause serious difficulties, especially in time
dependent problems, and is strongly discouraged.

FlexPDE is an adaptive system. Its procedures are based on the
assumption that by making timesteps and/or cell sizes smaller, a scale
can be found at which the behavior of the solution is representable by
polynomials. Discontinuities do not satisfy this assumption. A
discontinuity is a discontinuity, no matter how close you look.
Instantaneous turn-on or turn-off introduces high-frequency spatial or
temporal components into the solution, including those which are far
beyond the physical limits of real systems to respond. This makes the
computation slow and possibly physically meaningless.

The RAMP function generates a smooth transition from one value to
another, with a specified transition width. It can be thought of as a "fuzzy
IF", and has a usage very similar to an IF.. THEN, but without the harsh
switching characteristics.

The form is:

value = RAMP(expression, left_value, right_value, width)

This expression is logically equivalent to

value = IF expression < 0 THEN left_value ELSE right_value

except that the transition will be linear over width.

See the SWAGE function for a similar function with both smooth value
and derivative.

Example:

see "Samples | Misc | Swagetest.pde" for a picture of the SWAGE and
RAMP transitions and their derivatives.

3.6.8. The SAVE Function

The SAVE function creates a field on the finite element mesh, and saves
the values of the argument expression at the nodal points for subsequent
interpolation. SAVE builds a continuous representation of the data

 21

across the entire domain, and cannot preserve discontinuities in the
saved data.

The SAVE function may be used to block ill-behaved functions from
differentiation in the derivative computation for Newton's method, or to
avoid expensive re-computation of complex functions.

The normal use for SAVE is in the DEFINITIONS section, as in

name = SAVE (expression)

Note: SAVE() builds a continuous representation of the data across the
entire domain, and cannot preserve discontinuities in the fitted data. In
some cases, multiplying the data by an appropriate material parameter
can result in a continuous function appropriate for saving.

See the FIT() function for a similar function with integral conservation
and variable smoothing capabilities.

3.6.9. The SUM Function

The SUM function produces the sum of repetitive terms. The form is:

value = SUM(name, initial, final, expression)

The expression argument is evaluated and summed for name =
0,1,2,...final.

For example, the statement:

source = SUM(i,1,10,exp(-i))

forms the sum of the exponentials exp(-1)+exp(-2)+...+exp(-10).

The SUM function may be used with data ARRAYs, as in

DEFINITIONS
 A = ARRAY(1,2,3,4,5,6,7,8,9,10)
 source = SUM(i,1,10,A[i])

Example:

 22

Samples | Misc | Sum.pde

3.6.10. The SWAGE Function

The SWAGE function has been introduced to provide an alternative to
discontinuous functions like USTEP and the discontinuous IF..THEN
construct. Discontinuous switching can cause serious difficulties,
especially in time dependent problems, and is strongly discouraged.

FlexPDE is an adaptive system. Its procedures are based on the
assumption that by making timesteps and/or cell sizes smaller, a scale
can be found at which the behavior of the solution is representable by
polynomials. Discontinuities do not satisfy this assumption. A
discontinuity is a discontinuity, no matter how close you look.
Instantaneous turn-on or turn-off introduces high frequency spatial or
temporal components into the solution, including those which are far
beyond the physical limits of real systems to respond. This makes the
computation slow and possibly physically meaningless.

The SWAGE function generates a smooth transition from one value to
another, with a specified transition width. It also has smooth derivatives.
It can be thought of as a "fuzzy IF", and has a usage very similar to an
IF.. THEN, but without the harsh switching characteristics.

The form is:

value = SWAGE(expression, left_value, right_value, width)

This expression is logically equivalent to

value = IF expression < 0 THEN left_value ELSE right_value

except that the transition will be smeared over width.

See the RAMP function for a similar function which is smooth in value,
but not in derivative.

Example:

see "Samples | Misc | Swagetest.pde" for a picture of the SWAGE and
RAMP transitions and their derivatives.

 23

3.6.11. The VAL and EVAL functions

There are two ways to evaluate an arbitrary expression at selected
coordinates.

value = VAL(expression, x, y)
value = VAL(expression, x, y, z)

The value of expression is computed at the specified coordinates. The
coordinates must be constants.
This form allows FlexPDE to compute implicit couplings between
computation nodes referencing and evaluating the value. The value is
computed and stored at each phase of the solution process, allowing
efficient reference in many computations.

value = EVAL(expression, x, y)
value = EVAL(expression, x, y, z)

The Value of expression is computed at the specified coordinates. The
coordinates may be dynamically variable.
This form does NOT allow FlexPDE to compute implicit couplings
between computation nodes referencing and evaluating the value. The
value is recomputed at each reference, possibly leading to increased run
time.

3.7. Operators

3.7.1. Arithmetic Operators

The following customary symbols can be use in arithmetic expressions:

Operator Action
- Unary negate, Forms the negative of a single operand
+ Binary add, Forms the sum of two operands
- Binary subtract, Forms the difference of two operands
* Binary multiply, Forms the product of two operands
/ Binary divide, Divides the first operand by the second
^ Binary power, Raises the first operand to the second

 24

power
** Binary power, Alternative to ^

3.7.2. Relational Operators

The following operators may be used in constructing conditional
expressions:

Relational Operators

Operator Definition
= Equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
<> Not equal to

Relational Combinations

Operator Definition

AND Both conditions true
OR Either condition true
NOT (Unary) reverses condition

Assignment Operator

In addition to its use as an equal operator, problem descriptors use the
'=' symbol to assign (associate) values functions and expressions with
defined names.

3.7.3. String Operators

The following operators can be used in expressions that construct string
constants:

 25

Operator Action
+ Binary add, Forms the catenation of two text-string

operands

3.7.4. Vector Operators

The following operators perform various transformations on vector
quantities.

Vectors in three-dimensional problems are assumed to have one
component in each of the coordinate directions.

Vectors in two-dimensional problems are assumed to have two
components both of which lie in the plane of the problem. In some cases
a third component is inferred to be a scalar, such as the result of a
cross-product or a curl.

CROSS (vector1, vector2)

Forms the cross product of two vectors and returns the resulting
vector. In 2D, CROSS returns a scalar value equal to the component
of the vector cross product normal to the problem plane.

DOT (vector1, vector2)

Forms the dot product of two vectors and returns a scalar value equal
to the magnitude of the vector dot product.

MAGNITUDE (vector)

Returns a scalar equal to the magnitude of a vector argument.

MAGNITUDE (argx, argy [, argz])

Returns a scalar equal to the magnitude of a vector whose
components are argx and argy (and possibly argz in 3D).

NORMAL (vector)

Returns a scalar equal to the component of a vector argument normal
to a boundary.*

NORMAL (argx, argy [, argz])

Returns a scalar equal to the boundary-normal component of a vector
whose components are argx and argy (and possibly argz in 3D).*

TANGENTIAL(arg)

 26

Returns a scalar equal to the component of a vector argument
tangential to a boundary.*

TANGENTIAL (argx, argy [, argz])

Returns a scalar equal to the boundary-tangential component of a
vector whose components are argx and argy (and possibly argz in
3D).*

VECTOR (argx, argy [, argz])

Constructs a vector whose components are the scalar arguments.

XCOMP (vector)

Returns a scalar whose value is the first component of the vector
argument (regardless of the names of the coordinates).

YCOMP (vector)

Returns a scalar whose value is the second component of the vector
argument (regardless of the names of the coordinates).

ZCOMP (vector)

Returns a scalar whose value is the third component of the vector
argument, if it exists (regardless of the names of the coordinates).

* Note: NORMAL and TANGENTIAL operators may only be used in
boundary condition definitions or in boundary plots or integrals.

3.7.5. Differential Operators

Differential operator names are constructed from the coordinate names
for the problem, either as defined by the user, or as default names.

First derivative operators are of the form "D<name>", where <name> is
the name of the coordinate.

Second-derivative operators are of the form "D<name1><name2>".

In the default 2D Cartesian case, the defined operators are "DX", "DY",
"DXX", "DXY", and "DYY".

 27

All differential operators are expanded internally into the proper forms for
the active coordinate system of the problem.

D<n> (arg)

First order partial derivative of arg with respect to coordinate <n>, eg.
DX(arg).

D<n><m> (arg)

Second order partial derivative of arg with respect to coordinates <n>
and <m>, eg. DXY(arg).

DIV (arg)

Divergence of vector arg

DIV (argx, argy {, argz })

Divergence of the vector whose components are argx and argy (and
possibly argz in 3D).

GRAD (arg)

Gradient of scalar arg

CURL (arg)

Curl of vector arg. In 3D, returns the vector curl; in 2D, returns a
scalar value equal to the magnitude of the curl, which necessarily must
lie normal to the computation plane.

CURL (scalar_arg)

Curl of a scalar_arg (2D only). Assumes arg to be the magnitude of a
vector normal to the computation plane, and returns a vector result in
the computation plane.

CURL (argx, argy {, argz })

Curl of a vector whose components in the computation plane are argx
and argy (and possibly argz in 3D).

DEL2 (scalar_arg)

Laplacian of scalar_arg. Equivalent to DIV(GRAD(arg)).

 28

3.7.6. Integral Operators

Integrals may be formed over volumes, surfaces or lines. The specific
interpretation of the integral operators depends on the coordinate system
of the current problem. Integral operators can treat only scalar functions
as arguments. You cannot integrate a vector field.

Examples

Samples | Steady_State | Heatflow | HeatBdry.pde
Samples | Misc | 3D_Integrals.pde
Samples | Misc | Constraints | Bdry_Constraint.pde
Samples | Misc | Constraints | 3D_Constraint.pde
Samples | Misc | Constraints | 3D_Surf_Constraint.pde
Samples | Misc | Tintegral.pde

3.7.6.1. Time Integrals

The operators TINTEGRAL and TIME_INTEGRAL are synonymous, and
perform explicit time integration of arbitrary scalar values from the
problem start time to the current time:

TINTEGRAL (integrand)
TIME_INTEGRAL (integrand)

Note: This operator cannot be used to create implicit linkage between
variables. Use a GLOBAL VARIABLE instead.

3.7.6.2. Line Integrals

The operators BINTEGRAL and LINE_INTEGRAL are synonymous, and
perform line integrations.

The integral is always taken with respect to distance along the line or
curve.

At present, line integrals are only meaningful in 2D problems. General
3D line integrals are not yet implemented.

 29

In 2D Cartesian geometry, LINE_INTEGRAL is the same as
SURF_INTEGRAL.

In 2D cylindrical geometry, SURF_INTEGRAL will contain the 2*pi*r
weighting, while LINE_INTEGRAL will not.

BINTEGRAL (integrand, named_boundary)
LINE_INTEGRAL (integrand, named_boundary)

The boundary specification may be omitted, in which case the entire
outer boundary is implied.

Line integrals may be further qualified by specifying the region in which
the evaluation is to be made:

LINE_INTEGRAL (integrand, named_boundary, named_region)

named_region must be one of the regions bounded by the selected
boundary.

3.7.6.3. 2D Volume Integrals

The synonymous prototype forms of volume integral functions in 2D are:

INTEGRAL (integrand, region)
VOL_INTEGRAL (integrand, region)

Here region can be specified by number or name, or it can be omitted, in
which case the entire domain is implied.

In two-dimensional Cartesian problems, the volume element is formed by
extending the two-dimensional cell a single unit in the Z-direction, so that
the volume integral is the same as the area integral in the coordinate
plane.

In two-dimensional cylindrical problems, the volume element is formed
as 2*pi*r*dr*dz, so that the volume integral is NOT the same as the area
integral in the coordinate plane. For the special case of 2D cylindrical
geometry, the additional operator

AREA_INTEGRAL (integrand, region)

 30

computes the area integral of the integrand over the indicated region (or
the entire domain) without the 2*pi*r weighting.

3.7.6.4. 3D Volume Integrals

The synonymous prototype forms of volume integral functions in 3D are:

INTEGRAL (integrand, region, layer)
VOL_INTEGRAL (integrand, region, layer)

Here layer can be specified by number or name, or it can be omitted, in
which case the entire layer stack is implied.
region can also be specified by number or name, or it can be omitted, in
which case the entire projection plane is implied.

If region is omitted, then layer must be specified by name or omitted. If
both region and layer are omitted, the entire domain is implied.

For example,

INTEGRAL(integrand, region, layer) means the integral over the
subregion contained in the selected region and layer.
INTEGRAL(integrand, named_layer) means the integral over all
regions of the named layer.
INTEGRAL(integrand, region) means the integral over all layers of
the selected region.
INTEGRAL(integrand) means the integral over the entire domain.

3.7.6.5. 2D Surface Integrals

The synonymous prototype forms of surface integral functions in 2D are:

SINTEGRAL (integrand, named_boundary)
SURF_INTEGRAL (integrand, named_boundary)

Here named_boundary may be specified by name, or it can be omitted,
in which case the entire outer boundary of the domain is implied.

 31

In two-dimensional Cartesian problems, the surface element is formed by
extending the two-dimensional line element a single unit in the Z-
direction, so that the surface element is dl*1. In this case, the surface
integral is the same as the line integral.

In two-dimensional cylindrical problems, the surface element is formed
as 2*pi*r*dl, so the surface integral is NOT the same as the line integral.

The region in which the evaluation is made can be controlled by
providing a third argument, as in

SURF_INTEGRAL (integrand, named_boundary, named_region)

named_region must be one of the regions bounded by the selected
surface.

3.7.6.6. 3D Surface Integrals

In three-dimensional problems, there are several forms for the surface
integral:

1. Integrals over extrusion surfaces are selected by surface name or
number and qualifying region name or number:

SINTEGRAL (integrand, surface, region)
SURF_INTEGRAL (integrand, surface, region)

If region is omitted, the integral is taken over all regions of the
specified surface.
If both surface and region are omitted, the integral is taken over the
entire outer surface of the domain.

Integrals of this type may be further qualified by selecting the layer in
which the evaluation is to be made:

SURF_INTEGRAL (integrand, surface, region, layer)

layer must be one of the layers bounded by the selected surface.

 32

2. Integrals over "sidewall" surfaces are selected by boundary name and
qualifying layer name:

SINTEGRAL (integrand, named_boundary, named_layer)
SURF_INTEGRAL (integrand, named_boundary, named_layer)

If layer is omitted, the integral is taken over all layers of the specified
surface.

Integrals of this type may be further qualified by selecting the region in
which the evaluation is to be made:

SURF_INTEGRAL(integrand, named_boundary, named_layer,
named_region)

named_region must be one of the regions bounded by the selected
surface.

3. Integrals over entire bounding surfaces of selected subregions are
selected by region name and layer name, as with volume integrals:

SINTEGRAL (integrand, named_region, named_layer)
SURF_INTEGRAL (integrand, named_region, named_layer)

If named_layer is omitted, the integral is taken over all layers of the
specified surface.

3.8. Predefined Elements

The problem descriptor language predefines the following element:

PI 3.14159265358979

For Cartesian coordinates in which 'R' is not specified as a coordinate
name or a defined name, the problem descriptor language predefines the
following elements:

 33

R R=SQRT(x^2 + y^2)

! radius vector length in 2D

 R=SQRT(x^2 + y^2 + z^2)

! radius vector length in 3D

THETA THETA = ARCTAN(y/x)

! azimuthal angle in 2D or 3D

Note: If "R" or "Theta" appear on the left side of a definition
before any use in an expression, then the new definition will
become the meaning of the name, and the predefined meaning
will be hidden.

In staged problems where "stages = integer" is declared in the
SELECT section,

STAGE an internally declared index which steps between 1 and

integer.

In modal analysis (eigenvalue and eigenfunction) problems where
"modes = integer" is declared in the SELECT section,

LAMBDA an internally declared name which represents the various

eigenvalues.

3.9. Expressions

Value Expressions
Problem descriptors can contain expressions made of one or more
operators, variables, defined values and pairs of parentheses that
evaluate to numerical constants. In evaluating value expressions,
FlexPDE follows the algebraic rules of precedence in which unary
operators are evaluated first, followed by binary operators in the
following order:

power
multiplication and division
addition and subtraction
relational operators (<, <=, =, <>, >=, >)
relational combinations (AND, OR)

 34

When included in expressions, subexpressions enclosed in pairs of
parentheses are evaluated first, without regard to the precedence of any
operators which precede or follow them. Parentheses may be nested to
any level, with inner subexpressions being evaluated first and
proceeding outward. Parentheses must always be used in pairs.

Conditional-Value Expressions
Problem descriptors can contain conditional expressions of the form

IF condition THEN subexpression ELSE subexpression .

This form selects one of the two alternative values as the value of the
expression. It is used in expressions like "y = IF a THEN b ELSE c",
analogous to the expression "y = a ? b : c" in the C programming
language.

It is not the procedural alternative construct "IF a THEN y=b ELSE y=c"
familiar in procedural programming languages.

The THEN or ELSE subexpressions my contain nested
IF...THEN...ELSE expressions. Each ELSE will bind to the nearest
previous IF.

3.10. Repeated Text

The REPEAT..ENDREPEAT construct allows the repetition of sections
of input text.

The syntax looks like a FOR loop in procedural languages, but we
emphasize that in FlexPDE this feature constitutes a textual repetition,
not a procedural repetition.

The form of a repeat clause is

REPEAT name = initial TO final
REPEAT name = initial BY delta TO final

These statements specify that the following lines of descriptor text should
be repeated a number of times. The given name is defined as if it had

 35

appeared in the DEFINITIONS section, and is given the value specified
by initial.

The repeated section of text is terminated by the statement

ENDREPEAT

At this point, the value of name is incremented by delta (or by one, if no
delta is given). If the new value is not greater than final, the repeated
text is scanned again with the new value in place of name. If delta is
negative, the value of name is decremented and the termination test is
modified accordingly.

The REPEAT statement can appear in the following locations:

• in BATCH file lists
• in VARIABLE lists
• in EXTRUSION lists
• anywhere the REGION, START or LINE keywords are legal.
• around any plot command or group of plot commands.
• around any DEFINITION or group of DEFINITIONS.
• around any REPORT command or group of REPORT commands.
• around AT points in a HISTORY list

Use of ARRAYS and the $integer string function can extend the power
of the REPEAT loop.

Examples:

 REPEAT xc=1/4 by 1/4 to 7/4
 REPEAT yc=1/4 by 1/4 to 7/4
 START(xc+rad,yc) ARC(CENTER=xc,yc) ANGLE=360
CLOSE
 ENDREPEAT
 ENDREPEAT

This double loop constructs a 7 x 7 array of circles, all part of the same
REGION.

See the sample problems:

Samples|Misc|Repeat.pde
Samples|Misc|ArrayRepeat.pde

 36

[Note: REPEAT..ENDREPEAT replaces the older FOR..ENDFOR
facility used in earlier versions of FlexPDE. The older facility is still
supported for backward compatibility, but should not be used in new
problem descriptors.]

 37

4. The Sections of a Descriptor

The SECTIONS of a descriptor were outlined in the introduction. In the
following pages we present a detailed description of the function and
content of each section.

4.1. Title

The optional TITLE section can contain one literal string.

When a TITLE is used, the literal string it contains is used as a title label
for all MONITORS and PLOTS.

If TITLE is not specified, the plots will not have a title label.

Example:
 TITLE "this is my first model"

4.2. Select

The SELECT section, which is optional, is used when it is necessary to
override some of the default selectors internal to the program.

Selectors are used to control the flow of the process used to solve a
problem.

The SELECT section may contain one or more selectors and their
associated values. The default selectors have been chosen to optimize
how FlexPDE handles the widest range of problems.

The SELECT section should be used only when the default behavior of
FlexPDE is somehow inadequate.

Unlike the other elements used in program descriptors, the proper
names used for the selectors are not part of the standard language, and
are not meaningful in other descriptor sections.

 38

The selectors implemented in FlexPDE are specific to a version of
FlexPDE, and may not correspond to those available in previous
versions of FlexPDE or in other applications using the FlexPDE
descriptor language.

4.2.1. Mesh Generation Controls

The following controls can be used in the SELECT section to modify the
behavior of the mesh generator.
Logical selectors can be turned on by selector = ON, or merely
mentioning the selector
Logical selectors can be turned off by selector = OFF.

ASPECT default: 2.0

Maximum cell aspect ratio for mesh generation in 2D problems and 3D
surface meshes. Cells may be stretched to this limit of edge-size ratio.

CURVEGRID default: On

If ON, cells will be bent to follow curved boundaries, and a 3D mesh
will be refined to resolve surface curvature.
If OFF, neither of these modifications will be attempted, and the
computation will proceed with straight-sided triangles or flat-sided
tetrahedra. (It may be necessary to turn this option OFF when
surfaces are defined by TABLES, because the curvature is infinite at
table breaks.)

GRIDARC default: 30 degrees

Arcs will be gridded with no cell exceeding this angle. Other factors
may cause the sizes to be smaller.

GRIDLIMIT default: 8

Maximum number of regrids before a warning is issued. Batch runs
stop at this limit.

INITGRIDLIMIT default: 5

Maximum number of regridding passes in the initial refinement to
define initial values. INITGRIDLIMIT=0 suppresses initial refinement.

NGRID

Specifies the number of mesh rows in each dimension. Use this
control to set the maximum cell size in open areas. This is a

 39

convenient way to control the overall mesh density in a problem.
Default values are shown below:

 1D 2D 3D
Professional 100 15 10
Student 50 10 5

NODELIMIT

Specifies the maximum node count. If mesh refinement tries to create
more nodes than the limit, the cell-merge threshold will be raised to try
to balance errors across a mesh of the specified size. This control
cannot be used to reduce the size if the initial mesh construction,
which is dictated by NGRID, user density controls, and domain
boundary feature sizes. Default values are shown below:

 1D 2D 3D
Professional 2000000 2000000 2000000
Student 100 800 1600

REGRID default: On

By default, FlexPDE implements adaptive mesh refinement. This
selector can be used to turn it off and proceed with a fixed mesh.

SMOOTHINIT default: On

Implements a mild initial-value smoothing for time dependent
problems, to help ameliorate discontinuous initial conditions.

STAGEGRID default: Off

Forces regeneration of mesh with each stage of a staged problem.
FlexPDE attempts to detect stage dependencies in the domain and
regenerate the mesh, but this selector may be used to override the
automatic detection.

[Note:
See the "Mesh Control Parameters" section in this manual and the
"Controlling Mesh Density" section in the User Guide for more discussion
of mesh control.]

4.2.2. Solution Controls

The following controls can be used in the SELECT section to modify the
solution methods of FlexPDE.

 40

Logical selectors can be turned on by selector = ON, or merely
mentioning the selector.
Logical selectors can be turned off by selector = OFF.

AUTOSTAGE default: On

In STAGED problems, this selector causes all stages to be run
consecutively without pause. Turning this selector OFF causes
FlexPDE to pause at the end of each stage, so that results can be
examined before proceeding.

CHANGELIM default: 0.5(steady state),
 2.0(time dependent)

Specifies the maximum change in any nodal variable allowed on any
Newton iteration step (measured relative to the variable norm). In
severely nonlinear problems, it may be necessary to force a slow
progress toward the solution in order to avoid pathological behavior of
the nonlinear functions.

CUBIC default: Off

Use cubic Finite Element basis (same as ORDER=3). The default is
quadratic (ORDER=2). Cubic basis creates a larger number of nodes,
and sometimes makes the system more ill-conditioned.

ERRLIM default: 0.002

This is the primary accuracy control. Both the spatial error control
XERRLIM the temporal error control TERRLIM are set to this value
unless over-ridden by explicit declaration.
[Note: ERRLIM is an estimate of the relative error in the dependent
variables. The solution is not guaranteed to lie within this error. It may
be necessary to adjust ERRLIM or manually force greater mesh
density to achieve the desired solution accuracy.]

FIRSTPARTS default: Off

By default, FlexPDE integrates all second-order terms by parts,
creating the surface terms represented by the Natural boundary
condition. This selector causes first-order terms to be integrated by
parts as well. Use of this option may require adding terms to Natural
boundary condition statements.

FIXDT default: Off

Disables the automatic timestep control. The timestep is fixed at the
value given in the TIME section.

 41

HYSTERESIS default: 0.5
Introduces a hysteresis in the decay of spatial error estimates in time-
dependent problems. The effective error estimate includes this fraction
of the previous effective estimate added into the current instantaneous
estimate. This effect produces more stable regridding in most cases.

ICCG default: On

Use Incomplete Choleski Conjugate-Gradient in symmetric problems.
This method usually converges much more quickly. If ICCG=OFF or
the factorization fails, then the Orthomin method will be used.

ITERATE default: 1000 (steady-state)
 default: 500(time-dependent)

Primary conjugate gradient iteration limit. This is the count at which
convergence-coercion techniques begin to be applied. The actual hard
maximum iteration count is 4*ITERATE.

LINUPDATE default: 5

In linear steady-state problems, FlexPDE repeats the linear system
solution until the computed residuals are below tolerance, up to a
maximum of LINUPDATE passes.

MODES default: 0

Selects the Eigenvalue solver and specifies the desired number of
modes. The default is not to run an Eigenvalue problem.

NEWTON default: (5/changelim)+40

Overrides the default maximum Newton iteration limit.

NONLINEAR default: Automatic

Selects the nonlinear (Newton-Raphson) solver, even if the automatic
detection process does not want it.

NONSYMMETRIC default: Automatic

Selects the nonsymmetric Lanczos conjugate gradient solver, even if
the automatic detection process does not want it.

NOTIFY_DONE default: Off

Requests that FlexPDE emit a beep and a "DONE" message at
completion of the run.

NRMATRIX default: 5

 42

Sets the maximum number of Newton-Raphson iterations before
recomputing the coupling matrix in steady-state solutions. The matrix
is recomputed whenever the solution changes appreciably, or when
the residual is large.

NRMINSTEP default: 0.009

Sets the minimum fraction of the computed stepsize which will be
applied during Newton-Raphson backtracking. This number only
comes into play in difficult nonlinear systems. Usually the computed
step is unmodified.

NRSLOPE default: 0.1

Sets the minimum acceptable residual improvement in Newton-
Raphson backtracking of steady-state solutions.

NRUPDATE default: 3

Sets the maximum number of Newton-Raphson steps in each timestep
in nonlinear time dependent problems. The default (3) seems to give
the best balance between cost and stability. Well-behaved nonlinear
problems may run more quickly with 1. This selector is set
automatically by the PREFER_SPEED and PREFER_STABILITY
selectors.

NRUPFIT default: Off

"ON" requests that FITs and SAVEs be recalculated at each Newton
Iteration of nonlinear time-dependent problems. Prior to version 2.20e,
these items were computed once in each timestep. The default
condition uses only one Newton step per timestep, so this selector is
useful only if NRUPDATE is also set.

ORDER default: 2

Selects the order of finite element interpolation (2 or 3). The selectors
QUADRATIC and CUBIC are equivalent to ORDER=2 and ORDER=3,
respectively.

OVERSHOOT default: 0.001

Sub-iteration convergence control. Conjugate-Gradient solutions will
iterate to a tolerance of OVERSHOOT*ERRLIM. (Some solution
methods may apply additional multipliers.)

PRECONDITION default: On

Use matrix preconditioning in conjugate-gradient solutions. The
default preconditioner is the diagonal-block inverse matrix.

 43

PREFER_SPEED default: Off

Sets control parameters for time dependent problems to the best
balance for speedy completion of most problems. Use
PREFER_STABILITY for more difficult nonlinear problems.
PREFER_SPEED is equivalent to NRUPDATE=1, TNORM=2.

PREFER_STABILITY default: On

Sets control parameters for time dependent problems to a slower but
more stable configuration for difficult nonlinear problems.
PREFER_STABILITY is equivalent to NRUPDATE=3, TNORM=4.
Well-behaved nonlinear problems may run more quickly using
PREFER_SPEED.

QUADRATIC default: On

Selects use of quadratic Finite Element basis. Equivalent to
ORDER=2.

REINITIALIZE default: Off

Causes each Stage of a STAGED problem to be reinitialized with the
INITIAL VALUES specifications, instead of preserving the results of
the previous stage.

STAGES default: 1

Parameter-studies may be run automatically by selecting a number of
Stages. Unless the geometric domain parameters change with stage,
the mesh and solution of one stage are used as a starting point for the
next.

SUBSPACE default: MIN(2*modes,modes+8)

If MODES has been set to select an eigenvalue problem, this selector
sets the dimension of the subspace used to calculate eigenvalues.

TERRLIM default: 0.002

This is the primary temporal accuracy control. In time dependent
problems, the timestep will be cut if the estimated relative error in time
integration exceeds this value. The timestep will be increased if the
estimated temporal error is smaller than this value. TERRLIM is
automatically set by the ERRLIM control.
[Note: TERRLIM is an estimate of the relative error in the dependent
variables. The solution is not guaranteed to lie within this error. It may
be necessary to adjust TERRLIM to achieve the desired solution
accuracy.]

 44

TNORM default: 4

Error averaging method for time-dependent problems. Timestep
control is based on summed (2^TNORM) power of nodal errors.
Allowable values are 1-4. Use larger TNORM in problems with
localized activity in large mesh.

UPFACTOR default: 1

Multiplier on upwind diffusion terms. Larger values can sometimes
stabilize a marginal hyperbolic system.

UPWIND default: On

"Upwind" convection terms in the primary equation variable. In the
presence of convection terms, this adds a diffusion term along the flow
direction to stabilize the computation.

VANDENBERG default: Off

Use Vandenberg Conjugate-Gradient iteration (useful if hyperbolic
systems fail to converge). This method essentially solves (AtA)x =
(At)b instead of Ax=b. This squares the condition number and slows
convergence, but it makes all the eigenvalues positive when the
standard CG methods fail.

XERRLIM default: 0.002

This is the primary spatial accuracy control. Any cell in which the
estimated relative spatial error in the dependent variables exceeds this
value will be split (unless NODELIMIT is exceeded). XERRLIM is set
automatically by the ERRLIM selector.
[Note: XERRLIM is an estimate of the relative error in the dependent
variables. The solution is not guaranteed to lie within this error. It may
be necessary to adjust XERRLIM or manually force greater mesh
density to achieve the desired solution accuracy.]

4.2.3. Global Graphics Controls

The following controls can be used in the SELECT section to modify the
behavior of the graphics subsystem.
Logical selectors can be turned on by selector = ON, or merely
mentioning the selector.
Logical selectors can be turned off by selector = OFF.

 45

In the usual case, these selectors can be over-ridden by specific controls
in individual plot commands (see Graphic Display Modifiers).

ALIAS (coord) = "name" default: Coordinate
name

Defines an alternate label for the plot axes.

AUTOHIST default: On

Causes history plots to be updated when any other plot is drawn.

BLACK default: Off

Draw all graphic output in black only.

CDFGRID default: 51

Specifies the default size of CDF output grid (ie, 51x51).

CONTOURGRID default: 51

Resolution specification for contour plots. Actual computation cell
sizes will be used unless they exceed the size implied by this
resolution.

CONTOURS default: 15

Target number of contour levels. Contours are selected to give "nice"
numbers, and the number of contours may not be exactly as specified
here.

ELEVATIONGRID default: 401

Elevation plot grid size used by From..To elevation plots. Elevations on
boundaries ignore this number and use the actual mesh points.

FEATUREPLOT default: Off

If this selector is ON, FEATURE boundaries will be plotted in gray.
This was the default behavior in versions prior to 3.10b.

FINDERBINS default: 20

FlexPDE uses a banded subdivision of the box containing the domain
to speed the search for plot points in the computation mesh and
lookup points in TRANSFER files. In problems with meshes which are
dense in localized areas, the default of 20 bands may be insufficient to
speed the lookup, and a larger number of bands may be required. Use
FINDERBINS to select a new number. [3.10a]

FONT default: 2

 46

Font=1 selects sans-serif font. Font=2 selects serif font.

GRAY default: Off

Draws all plots with a gray scale instead of the default color palette.

HARDMONITOR default: Off

Causes MONITORS to be written to the hardcopy (.pg5) file.

LOGLIMIT default: 15

The range of data in logarithmic plots is limited to LOGLIMIT decades
below the maximum data value. This is a global control which may be
overridden by the local LOG(number) qualifier on the plot command.

MERGE default: On

Allows merging of low-error mesh cells. Only cells which have
previously been split can be merged.

NOMINMAX default: Off

Deletes "o" and "x" marks at min and max values on all contour plots.

NOTAGS default: Off

Suppresses level identifying tags on all contour and elevation plots.

NOTIPS default: Off

Plot arrows in vector plots without arrowheads. Useful for bi-directional
stress plots.

PAINTED default: Off

Draw color-filled contour plots. Plots can be painted individually by
selecting PAINT in the plot modifiers.

PAINTGRID default: On

Draw color-filled grid plots. Colors represent distinct materials, as
defined by parameters.

PAINTMATERIALS default: On

Synonymous with PAINTGRID, included for symmetry with individual
PLOT modifiers.

PAINTREGIONS default: Off

Sets PAINTGRID, but selects a different coloring scheme. Colors
represent logical regions in 2D, or logical (region,layer) compartments
in 3D, instead of distinct material parameters.

 47

PLOTINTEGRATE default: On

Integrate all spatial plots. Default is volume and surface integrals,
using 2*pi*r weighting in cylindrical geometry. Histories are not
automatically integrated, and must be explicitly integrated.

PRINTMERGE default: Off

Send all stages or plot times of each EXPORT statement to a single
file. By default, EXPORTS create a separate file for each time or
stage. Individual EXPORTS can be controlled by plot modifiers.

SURFACEGRID default: 51

Selects the minimum resolution for Surface plots.

TEXTSIZE default: 35

Controls size of text on plot output. Value is number of lines per page,
so larger numbers mean smaller text.

THERMAL_COLORS default: On

Sets the order of colors used in labeling plots. ON puts red is at the top
(hot). OFF puts red at the bottom (lowest spectral color).

VECTORGRID default: 41

Sets minimum resolution of Vector plots.

VIEWPOINT (x, y, angle) default: negative X&Y, 30

Defines default viewpoint for SURFACE plots. Angle is in degrees. (In
3D, this specifies a position in the cut plane)

4.3. Coordinates

The optional COORDINATES section defines the coordinate geometry of
the problem. The basic form of the section is:

COORDINATES geometry

where geometry may be any of the following:

 48

Name Meaning

CARTESIAN1 1D Cartesian coordinate named 'X'
CYLINDER1 1D Cylindrical coordinate named 'R'
SPHERE1 1D Spherical coordinate named 'R'

CARTESIAN2 2D Cartesian coordinates named 'X' and 'Y'.
XCYLINDER 2D Cylindrical coordinates with axial coordinate 'Z' lying

along the horizontal (X) plot axis, and radial coordinate
'R' lying along the vertical(Y) plot axis.

YCYLINDER 2D Cylindrical coordinates with radial coordinate 'R'
lying along the horizontal (X) plot axis, and axial
coordinate 'Z' lying along the vertical(Y) plot axis.

CARTESIAN3 3D Cartesian coordinates named 'X', 'Y' and 'Z'.

Renaming Coordinates

A second form of the COORDINATES section allows renaming of the
coordinates:

COORDINATES geometry ('Xname' [,'Yname' [,'Zname']])

In this case, the 'Xname' argument renames the coordinate lying
along the horizontal plot axis, and 'Yname' renames the
coordinate lying along the vertical plot axis. 'Zname' renames
the extrusion coordinate. Names may be quoted strings or
unquoted names.

Renaming coordinates causes a redefinition of the differential operators.
DX becomes D<Xname>, etc.

The DIV, GRAD, and CURL operators are expanded correctly for the
designated geometry. Use of these operators in the EQUATIONS
section can considerably simplify problem specification.

IF no COORDINATES section is specified, a CARTESIAN2 coordinate
system is assumed.

 49

4.4. Variables

The VARIABLES section is used to define and assign names to all the
primary dependent variables used in a problem descriptor. All names
appearing in the VARIABLES section will be represented by a finite
element approximation over the problem mesh. Each variable is
assumed to define a continuous scalar field over the problem domain. It
is further assumed that each variable will be accompanied by a partial
differential equation listed in the EQUATIONS section.

In assigning names to the dependent variables, the following rules apply:

• Variable names must begin with an alphabetic character.
They may not begin with a number or symbol.

• Variable names may be a single character other than the
single character t, which is reserved for the time variable.

• Variable names may be of any length and any combination
of characters, numbers and/or symbols other than reserved
words.

• Variable names may not contain any separators.
Compound names can be formed with the '_' symbol (e.g.
temperature_celsius).

• Variable names may not contain the '-' which is reserved for
the minus sign.

Example:

VARIABLES
U,V

4.4.1. The THRESHOLD Clause

An optional THRESHOLD clause may be associated with a variable
name.

The THRESHOLD value determines the minimum range of values of the
variable for which FlexPDE must try to maintain the requested ERRLIM
accuracy. In other words, THRESHOLD defines the level of variation at
which the user begins to lose interest in the details of the solution.

 50

Error estimates are scaled to the greater of the THRESHOLD value or
the observed range of the variable, so the THRESHOLD value becomes
meaningless once the observed variation of a variable in the problem
domain exceeds the stated THRESHOLD. If you make the
THRESHOLD too large, the accuracy of the solution will be degraded. If
you make it too small, you will waste a lot of time computing precision
you don't need. So if you provide a THRESHOLD, make it a modest
fraction of the expected range (max minus min) of the variable.

The THRESHOLD clause has two alternative forms:

variable_name (THRESHOLD = number)
variable_name (number)

[Note: In most cases, the use of THRESHOLD is meaningful only in
time-dependent or nonlinear steady-state problems with uniform initial
values, or that ultimately reach a solution of uniform value.]

4.4.2. Moving Meshes

FlexPDE version 5 allows the specification of equations to move the
computation mesh.

In order to do this, you must assign a Variable as a surrogate for each
coordinate you wish to modify. This specification uses the form

variable_name = MOVE (coordinate_name).

This declaration assigns variable_name as a surrogate variable for the
coordinate_name. You may subsequently assign EQUATIONS and
boundary conditions to the surrogate variable in the normal way, and
these equations and boundary conditions will be imposed on the values
of the selected mesh coordinate at the computation nodes.

Example:

VARIABLES
U,V
Xm = MOVE(X)

 51

4.4.3. The SIMPLEX Modifier

A variable may be forced to be modeled with a linear basis, regardless of
the basis of the computation. This modifier takes the form

variable_name (SIMPLEX)

In some cases, the imposition of a lower-order basis on one selected
variable can improve the stability of a computation.

4.5. Global Variables

The GLOBAL VARIABLES section is used to define auxiliary or
summary values which are intricately linked to the field variables.

Each GLOBAL VARIABLE takes on a single value over the entire
domain, as opposed to the nodal finite element field representing a
VARIABLE.

GLOBAL VARIABLES differ from simple DEFINITIONS in that
DEFINITIONS are algebraically substituted in place of their references,
while GLOBAL VARIABLES are assigned a row and column in the
master coupling matrix and are solved simultaneously with the finite
element equations.

The GLOBAL VARIABLES section must follow immediately after the
VARIABLES section. Rules for declaring GLOBAL VARIABLES are the
same as for VARIABLES, and a GLOBAL VARIABLE may have a
THRESHOLD.

Each GLOBAL VARIABLE will be associated with an entry in the
EQUATIONS section, with rules identical to those for VARIABLES.

GLOBAL VARIABLES do not have boundary conditions. They may be
either steady-state or time-dependent, and may be defined in terms of
integrals over the domain, or by point values of other functions.

Examples:

Samples | Misc | Heaterssi.pde

 52

Samples | Misc | Heaterti.pde

[Note: In previous versions of FlexPDE, Global Variables were referred
to as SCALAR VARIABLES. This usage is still allowed for compatibility,
but the newer terminology is preferred.]

4.6. Definitions

The DEFINTIONS section is used to declare and assign names to
special numerical constants, coefficients, and functions used in a
problem descriptor.

In assigning names to the definitions, the following rules apply:

• Must begin with an alphabetic character. May not begin

with a number or symbol.

• May be a single character other than the single character t,

which is reserved for the time variable.

• May be of any length and any combination of characters,

numbers, and symbols other than reserved words,
coordinate names or variable names.

• May not contain any separators. Compound names can be

formed with the '_' symbol (e.g. temperature_celsius).

• May not contain the '-' which is reserved for the minus sign.

Normally, when a definition is declared it is assigned a value by
following it with the assignment operator '=' and either a value or an
expression. Definitions are dynamic elements and when a value is
assigned, it will be the initial value only and will be updated, if necessary,
by the problem solution.

Example:

Viscosity = 3.02e-4*exp(-5*Temp)

Definitions are expanded inline in the partial differential equations of the
EQUATIONS section. They are not represented by a finite element

 53

approximation over the mesh, but are calculated as needed at various
times and locations.

Redefining Regional Parameters

Names defined in the DEFINITIONS section may be given overriding
definitions in some or all of the REGIONS of the BOUNDARIES section.
In this case, the quantity may take on different region-specific values.
Quantities which are completely specified in subsequent REGIONS may
be stated in the DEFINITIONS section without a value.

See the User Guide section "Setting Material Properties by Region" for
examples of redefined regional parameters.

4.6.1. ARRAY Definitions

Names may be defined as representing arrays or lists of values. The
statement

name = ARRAY [value_1 , value_2 ... value_n]

will define name to be an n-element array of values value_1 ... value_n.

In subsequent text, these values may be referenced as

name [index]

The values given in the value list must evaluate to scalar numbers. They
may not contain coordinate or variable dependencies.

[Note: In previous versions, the elements of an array were required to
be constants computable at the time of reading the script. In version
5, the elements of an array need only be computable at the time they
are used.]

Example:

 definitions
 xc=array(1/3, 2/3, 3/3, 4/3, 5/3) { a list of X-coordinates }

 54

 yc=array(1/3, 2/3, 3/3, 4/3, 5/3) { a list of Y-coordinates }
 ...
 boundaries
 region 1
 repeat i=1 to 5 { an indexed loop on X-position }
 repeat j=1 to 5 { an indexed loop on Y-position }

start(xc[i]+rad,yc[j]) { an array of circular dots at the }
arc(center=xc[i],yc[j]) angle=360 { ... tabulated coordinates }
close

 endrepeat
 endrepeat

This text generates a 5 x 5 array of circles in the domain, all in region
1.

See also "Samples | Misc | arrayrepeat.pde".

4.6.2. Parameterized Definitions

Definitions can be made to depend on one to three explicit arguments,
much as with a Function definition in a procedural language. The syntax
of the parameterized definition is

name (argname) = expression
name (argname1 , argname2) = expression
name (argname1 , argname2 , argname3) = expression

The construct is only meaningful if expression contains references to
the argnames. Names defined in this way can later be used by
supplying actual values for the arguments. As with other definitions in
FlexPDE, these actual parameters may be any valid expression with
coordinate or variable dependences. The argnames used in the
definition are local to the definition and are undefined outside the scope
of the defining expression.

Note that it is never necessary to pass known definitions, such as
coordinate names, variable names, or other parameters as arguments to
a parameterized definition, because they are always globally known and
are evaluated in the proper context. Use the parameterized definition
facility when you want to pass values that are not globally known.

 55

[Note: This construct is implemented by textual expansion of the
definitions in place of the function reference. It is not a run-time call,
as in a procedural language.]

Example:

DEFINITIONS
uu(arg) = arg*arg
...

EQUATIONS
div(a*grad(u)) + uu(u+1)*dx(u) +4 = 0;

In this case, the equation will expand to

div(a*grad(u)) + (u+1)*(u+1)*dx(u) + 4 = 0.

See also "Samples|Misc|func.pde"

4.6.3. STAGED Definitions

FlexPDE can perform automated parameter studies through use of the
"staging" facility. In this mode, FlexPDE will run the problem a number of
times, with differing parameters in each run. Each stage begins with the
solution and mesh of the previous stage as initial conditions.

The STAGES Selector

In the SELECT section, the statement

STAGES = number

specifies that the problem will be run number times. A parameter
named STAGE is defined, which takes on the sequence count of the
staged run. Other definitions may use this value to vary parameter
values, as for example:

Voltage = 100*stage

STAGED Definitions

A parameter definition may also take the form:

 56

param = STAGED (value_1, value_2, ... value_n)

In this case, the parameter param takes on value_1 in stage 1,
value_2 in stage 2, etc.
If STAGED parameters are defined, the STAGES selector is optional.
If the STAGES selector is not defined, the length of the STAGED list
will be used as the number of stages. If the STAGES selector is
defined, it overrides the length of the STAGED list.

See the example "Samples | Misc | Stages.pde".

STAGED Geometry

If the geometric domain definition contains references to staged
quantities, then the solution and mesh will not be retained, but the
mesh will be regenerated for the new geometry. History plots can still
be displayed for staged geometries.

See the example "Samples | Misc | Stage_Geom.pde".

FlexPDE attempts to detect stage dependence in the geometrical
domain definition and automatically regenerate the mesh. If for any
reason these dependencies are undetected, the global selector
STAGEGRID can be used to force grid staging.

4.6.4. POINT Definitions

A name may be associated with a coordinate point by the construct

point_name = POINT(a,b)

Here a and b must be computable constants at the time the definition is
made. They may not depend on variables or coordinates. They may
depend on stage number.

The name of the point can subsequently appear in any context in which
the literal point (a,b) could appear.

 57

4.6.5. Data Import Definitions

4.6.5.1. The TABLE Input function

FlexPDE supports a tabular data import function:

name = TABLE ('filename')

This statement imports a data table from the named file and associates
the data with the defined name.

Normally, the statement appears in a parameter definition (in the
DEFINITIONS section or as a regional parameter definition in a REGION
clause), and the table data are associated with the given name.

TABLE can also be used in arithmetic expressions, in which case the
data are unique to that specific evaluation.

TABLE data are interpolated with linear, bilinear or trilinear interpolation
on the specified data grid.

FlexPDE can accept (import) and generate (export) non-analytic data
through external one, two, or three dimensional table files. This feature
is useful for modeling systems where experimental data is available and
for interfacing with other software programs.

Table import files are ASCII text files, and can be generated with any
ASCII text editor, by user programs designed to generate tables, or by
FlexPDE itself, using the EXPORT plot modifier or the TABLE output
statement (see MONITORS and PLOTS).

Modifying Table Coordinates
In the normal case, the name(s) of the table coordinate(s) are given in
the table file itself. However, an alternative form of the TABLE input
function can be used to rename the coordinates:

name = TABLE ('filename', coord1 [,coord2...])

In this case, the coordinates named in the file will be over-ridden by the
stated coordinate names. These names must have been defined before
their use in the TABLE statement.

 58

When the parameter name is used in subsequent computations, the
current values of the table coordinates will be used to interpolate the
value. For instance, if the table coordinates are the spatial coordinates X
and Y, then during computations or plotting, the named parameter will
take on a spatial distribution corresponding to the table data spread over
the problem domain.

See the TABLEDEF statement for an alternative form of table input.

See the SPLINETABLE statement for an alternative form of table
interpolation.

Examples:

Samples | Misc | Table.pde

4.6.5.2. The TABLEDEF input statement

The TABLEDEF input statement allows the import of tabular data, similar
to the TABLE input function.

The format is

TABLEDEF('filename',name1 [,name2,..])

Unlike the TABLE statement, the TABLEDEF statement can be used to
directly define one or several parameters from a multi-valued table file.
Whereas in the TABLE statement the additional arguments are
coordinate reassignments, in the TABLEDEF statement the additional
arguments are the names to be defined and associated with the table
data. In this, the TABLEDEF statement is syntactically identical to the
TRANSFER statement.

See TABLE File Format for a definition of the table file format.

4.6.5.3. The SPLINETABLE function

SPLINETABLE is a variation of the TABLE input function, and uses the
same table format.

name = SPLINETABLE ('filename')

 59

SPLINETABLE causes the data to be interpolated using cubic splines.
The interpolating functions are constructed so that the interpolated value
and its first and second derivatives are all continuous across table grid
positions. A condition of zero curvature is applied at the table edges.

Only tables of one or two dimensions are currently supported.

Examples:

See Samples | Misc | Spline1.pde and Samples | Misc |
Splinetable.pde

4.6.5.4. TABLE File format

Data files for use in TABLE, TABLEDEF or SPLINETABLE input must
have the following form:

{ comments }
name_coord1 datacount1
 value1_coord1 value2_coord1 value3_coord1 …
name_coord2 datacount2
 value1_coord2 value2_coord2 value3_coord1 …
name_coord3 datacount3
 value1_coord3 value2_coord3 value3_coord3 …
data { comments }
data111 data211 data311 …
data121 data221 data321 …
data131 data231 data331 …
 … … …
 … … …
data112 data 212 data312 …
data122 data 222 data322 …
data132 data 232 data 332 …
 … … …
 … … …

where

name_coordN is the coordinate name in the N direction. Typically,

name_coord1 is x, name_coord2 is y.

datacountN is the number of data points in the N direction.

 60

DataJKL is the data at coordinate point (J,K,L)

 … … ellipses indicate extended lines, which may be continued

over multiple lines.

Example:

{ this is an example table }
x 6

-0.01 2 4 6 8 10.01
y 6

-0.01 2 4 6 8 10.01
data

1000 1 1000 1 1000 1
1 1000 1 1000 1 1000
1000 1 1000 1 1000 1
1 1000 1 1000 1 1000
1000 1 1000 1 1000 1
1 1000 1 1000 1 1000

4.6.5.5. The TRANSFER input statement

The TRANSFER input statement allows the transfer of data between
FlexPDE runs, maintaining the full information content of the original
computation.

TRANSFER ('filename', name1 [,name2, ...])

The file specified in the transfer input function must have been written by
FlexPDE using the TRANSFER output function. The names listed in the
input function will become defined as if they had appeared in a "name="
definition statement. The names will be positionally correlated with the
data fields in the referenced output file.

Examples:

Samples | Misc | Import-Export | Transfer_Out.pde
Samples | Misc | Import-Export | Transfer_In.pde

 61

4.6.5.6. The TRANSFERMESH input statement

The TRANSFERMESH input statement has the same form as the
TRANSFER statement:

TRANSFERMESH ('filename', name1 [,name2,..])

The TRANSFERMESH input statement, however, not only imports data
definitions stored on disk, but also IMPOSES THE FINITE ELEMENT
MESH STRUCTURE of the imported file onto the current problem,
bypassing the normal mesh generation process.

In order for this imposition to work, the importing descriptor file must
have EXACTLY the same domain definition statements as the exporting
file.
The TRANSFERMESH file does not contain a complete description of
the boundaries and boundary conditions of the exporting problem, but
only the mesh layout. Be sure to use a copy of the exporting domain
definition in your importing descriptor. You may change the boundary
conditions, but not the boundary positions and ordering.

TRANSFERMESH can read only files created by a TRANSFER output
statement. Other file formats cannot be read.

Examples:

Samples | Misc | Import-Export | Mesh_out.pde
Samples | Misc | Import-Export | Mesh_in.pde

4.6.5.7. TRANSFER File format

The format of a TRANSFER file is dictated by the TRANSFER output
format, and contains the following data.

1) A header containing an identifying section listing the FlexPDE version,
generating problem name and run time, and plotted variable name or
function equation. This header is enclosed in comment brackets, { ... }.

2) A file identifier "FlexPDE transfer file", and the problem title.

3) The number of geometric dimensions and their names.

 62

4) The finite element basis identifier from 4 to 10, meaning:

• 4 = linear triangle (3 points per cell)
• 5 = quadratic triangle (6 points per cell)
• 6 = cubic triangle (9 points per cell)
• 7 = cubic triangle (10 points per cell)
• 8 = linear tetrahedron (4 points per cell)
• 9 = quadratic tetrahedron (10 points per cell)
• 10 = cubic tetrahedron (20 points per cell)

5) The number of degrees of freedom (points per cell as above).

6) The number of output variables and their names

Each distinct material type in the exported problem is represented by a
separate section in the TRANSFER file. Each section consists of:

7) The number of nodes

8) The nodal data, containing one line for each node with the following
format:

• two or three coordinates and as many data values as
specified in (6).

• a colon (:)
• the global node index
• the node type (0=interior; 1=joint; 2=edge; 3=face;

4=exterior)
• the type qualifier (region number, joint number, edge

number or face number)

9) The number of cells.

10) The cell connectivity data, one line per cell, listing the following:

• the geometric basis (as in 4)
• the node numbers (local to the current material block)

which comprise the cell. The count of these node numbers
is controlled by (5).

• a colon (:)
• the global cell number
• the logical region number

 63

• the material number

The node numbers are presented in the following order:

4.6.6. The PASSIVE Modifier

Definitions may be specified as PASSIVE, in which case they will be
blocked from differentiation with respect to system variables in the
formation of the global Jacobian matrix. In strongly nonlinear systems,
this sometimes prevents pathological behavior, at the expense of slower
convergence.

Example:

Viscosity = Passive(3.02*exp(-5*Temp))

The derivative of Viscosity with respect to Temp will be forced to
zero, instead of the true value (-5)*3.02*exp(-5*Temp).

 64

4.6.7. Mesh Control Parameters

The names MESH_SPACING and MESH_DENSITY have special
meaning in controlling the initial mesh layout. They may appear in the
context of a parameter definition or redefinition (ie, in the DEFINITIONS
section or in a REGION), or in the context of a boundary condition.

MESH_SPACING dictates the desired spacing between mesh nodes.

MESH_DENSITY is the reciprocal of MESH_SPACING, and dictates the
desired number of mesh nodes per unit distance.

Appearing in the DEFINITIONS section, these parameters specify a
global default mesh density function in the volume of the domain.

Appearing in a REGION, these parameters specify a mesh density
function in the volume of the current region (in 3D they may be qualified
by LAYER or SURFACE).

Appearing in the context of a boundary condition (ie, inside a path) they
dictate the mesh density along the curve or sidewall surface currently
being defined. In 3D they may be qualified by LAYER or SURFACE to
restrict the application of the density function.

MESH_SPACING and MESH_DENSITY specifications may be any
function of spatial coordinates (but not of VARIABLES).

If more than one specification is active in a part of the mesh, the control
resulting in the smallest mesh cells will be used.

Examples:

MESH_DENSITY = exp(-(x^2+y^2+z^2)

This will create a Gaussian density distribution around (0,0,0), with
spacing ultimately overridden by the size limit implied by NGRID.

See the User Guide section "Controlling Mesh Density" for more
information.

 65

See also
"Samples | Misc | Mesh_Control | Mesh_Density.pde"
"Samples | Misc | Mesh_Control | Mesh_Spacing.pde"
"Samples | Misc | Mesh_Control | Bdry_Density.pde"
"Samples | Misc | Mesh_Control | Bdry_Spacing.pde"

4.7. Initial Values

The INITIAL VALUES section is used to initialize the dependent
variables.

When not specifically initialized, the dependent variables are initialized to
zero.

For steady state problems the INITIAL VALUES section is optional.

For time dependent problems, the INITIAL VALUES section should
include a value assignment statement for each dependent variable.

Initial value statements are formed by following the dependent variable
name with the assignment operator '=' and either a constant, function,
expression or previously defined definition.

Example:

INITIAL VALUES
U = 1.0-x

Setting Initial Values from an imported table:

Initial values can be set directly by an imported TABLE:

INITIAL VALUES
U = TABLE("initial_U.tbl")

For syntactic reasons, initial values cannot be set directly from
TRANSFERs (q.v.).
An intermediate name must be defined by the transfer command, and
then assigned to the initial value:

DEFINITIONS
TRANSFER("initial_U.xfr",U0)

INITIAL VALUES

 66

U = U0

4.8. Equations

The EQUATIONS section is used to list the partial differential equations
that define the dependent variables of the problem.
There must be one equation for each dependent variable listed in the
VARIABLES section.

Equations are entered into a problem descriptor in much the same way
as they are written on paper. In their simplest form they can be written
using the DIV (divergence), GRAD (gradient), CURL and
DEL2(Laplacian) operators. FlexPDE will correctly expand these
operators in the coordinate system specified in the COORDINATES
section.

When it is necessary to enter partial differential terms, differential
operators of the form D<name> or D<name1><name2> may be used.
Here <name> represents a coordinate name, such as X, Y or Z (or
other names chosen by the user in the COORDINATES section).

In the default 2D Cartesian geometry, the operators DX, DY, DXX, DXY,
DYX and DYY are defined.

Similarly, in the default cylindrical geometries (XCYLINDER and
YCYLINDER), the operators DR, DZ, DRR, DRZ, DZR and DZZ are
defined.

In 3D Cartesian geometry, the operators DZ, DZZ, DXZ, and DYZ are
also defined.

Example:

div(k*grad(u)) + u*dx(u) = 0

Third Order and Higher Order Derivatives
Equation definitions may contain only first and second order derivatives.
Problems such as the biharmonic equation which require the use of
higher order derivatives must be rewritten using an intermediate variable
so that they contain only first and second order derivatives.

 67

4.8.1. Association between Equations, Variables
and Boundary Conditions

In problems with a single variable, there is no ambiguity about the
assignment of boundary conditions to the equations.

In problems with more than one variable, FlexPDE requires that
equations be explicitly associated with variables by tagging each
equation with a variable name. This process also allows optimal
ordering of the equations in the coupling matrix.

Example:

U: div(k*grad(u))+u*dx(u)= 0 { associates this equation with the
variable U }

Boundary conditions are defined in the BOUNDARIES section, and are
associated with equations by use of the variable name, which selects an
equation through the association tag. VALUE(U)=0, for example, will
cause the nodal equations for the equation tagged U: to be replaced by
the equation u=0 along the selected boundary .

Natural boundary conditions must be written with a sign corresponding to
the sign of the generating terms when they are moved to the left side of
the equal sign. We suggest that all second-order terms should be written
on the left of the equal sign, to avoid confusion regarding the sign of the
applied natural boundary condition.

4.8.2. Modal Analysis and Associated Equations

When modal analysis is desired, it must be declared in the SELECT
section with the selector

MODES = integer

where integer is the number of modes to be analyzed.

The equation should then be written in the form

 68

F(V) +LAMBDA*G(V) = H(X,Y)

Where F(V) and G(V) are the appropriate terms containing the
dependent variable, and H(X,Y) is a driving source term.

The name LAMBDA is automatically declared by FlexPDE to mean the
eigenvalue, and should not be declared in the DEFINITIONS section.

4.8.3. Moving Meshes

FlexPDE version 5 introduces the capability of moving meshes. Use of
this capability requires:

• The assignment of a surrogate variable for each coordinate to be

moved
• Definition of an EQUATION of motion for each such surrogate

coordinate
• Suitable Boundary Conditions on the surrogate coordinate.

In the usual case, there will be a variable defining the mesh velocity.
This may be the same as the fluid velocity, in which case the model is
purely Lagrangian, or it may be some other better-behaved motion, in
which case the model is mixed Lagrange/Eulerian (ALE).

FlexPDE 5 contains no provisions for re-connecting distorted meshes.
Pure Lagrangian computations are therefore discouraged, as severe
mesh corruption may result.

Internal Mesh Redistribution

A convenient technique is to define a variable for mesh velocity in each
coordinate, and for which boundary conditions are imposed to move the
boundary. Internally, the velocity can be simply diffused, according to

DIV(GRAD(x_velocity)) = 0

together with the equation associating the velocity to the surrogate
coordinate variable

VELOCITY(x_surrogate) = x_velocity

 69

Effect of mesh motion on ordinary equations

EQUATIONS are always written in the Eulerian (Laboratory) reference
frame, regardless of whether the mesh moves or not. FlexPDE
automatically computes the required correction terms for mesh motion.

4.9. Constraints

The CONSTRAINTS section, which is optional, is used to apply integral
constraints to the system. These constraints can be used to eliminate
ambiguities that would otherwise occur in steady state systems, such as
mechanical and chemical reaction systems, or when only derivative
boundary conditions are specified.

The CONSTRAINTS section, when used, normally contains one or more
statements of the form

INTEGRAL (argument) = expression

CONSTRAINTS should not be used with steady state systems which
are unambiguously defined by their boundary conditions, or in time-
dependent systems.

A CONSTRAINT creates a new auxiliary functional which is minimized
during the solution process. If there is a conflict between the
requirements of the CONSTRAINT and those of the PDE system or
boundary conditions, then the final solution will be a compromise
between these requirements, and may not strictly satisfy either.

CONSTRAINTS can be applied to any of the INTEGRAL operators.

CONSTRAINTS cannot be used to enforce local requirements, such as
positivity, to nodal variables.

Examples:

Samples | Misc | Constraints | Constraint.pde
Samples | Misc | Constraints | Bdry_Constraint.pde
Samples | Misc | Constraints | 3D_Constraint.pde
Samples | Misc | Constraints | 3D_Surf_Constraint.pde

 70

Samples | Steady_State | Chemistry | Reaction.pde

4.10. Extrusion

The layer structure of a three-dimensional problem is specified bottom-
up to FlexPDE in the EXTRUSION Section:

EXTRUSION

SURFACE "<Surface_name_1>" Z = expression_1
LAYER "<Layer_name_1>"

SURFACE "<Surface_name_2>" Z = expression_2
LAYER "<Layer_name_2>"

. . .
SURFACE "<Surface_name_n>" Z = expression_n

The specification must start with a SURFACE and end with a
SURFACE.
LAYERS correspond to the space between the surfaces. The LAYER
specifications may be omitted if a name is not needed to refer to them.

• Surfaces need not be planar, and they may merge, but they must
not cross. expression_1 is assumed to be everywhere less than or
equal to expression_2, and so on. Use a MIN or MAX function
when there is a possibility of crossover.

• Surface expressions can refer to regionally defined parameters, so
that the surface takes on different definitions in different regions.
The disjoint expressions must, however, be continuous across
region interfaces. (see example "Samples | Misc | 3d_Domains |
Regional_surfaces.pde")

• If surface expressions contain conditional values (IF...THEN or
MIN, MAX, etc), then the base plane domain should include
FEATURES to delineate the breaks, so they can be resolved by the
gridder.

• Surfaces must be everywhere continuous, including across material
interfaces. Use of conditionals or regional definitions must
guarantee surface continuity.

• Surface expressions can refer to tabular input data (see example
"Samples | Misc | 3D_Domains | Tabular_surfaces.pde").

 71

The layer and surface names in these specifications are optional, and if
layers have no names, the LAYER statements may be omitted.

Shorthand form
Stripped of labels, the EXTRUSION specification may be written:

EXTRUSION Z = expression_1, expression_2 [, ...]

In this form layers and surfaces must subsequently be referred to by
numbers, with surface numbers running from 1 to n and layer numbers
from 1 to (n-1). SURFACE #1 is Z=expression_1, and LAYER #1 is
between SURFACE #1 and SURFACE #2.

See the User Guide chapter Using FlexPDE in Three-Dimensional
Problems for more information

4.11. Boundaries

The BOUNDARIES section is used to describe the problem domain over
which the specified equation system is to be solved, and to specify
boundary conditions along the outer surfaces of this domain.

Because of the history of FlexPDE, the discussion of boundaries has a
strong two-dimensional orientation. Three-dimensional figures are made
up by extruding a two-dimensional domain into the third dimension.
One-dimensional domains are constructed by specializations of 2D
techniques.

Every problem descriptor must have a BOUNDARIES section.

Problem BOUNDARIES are made up by walking the periphery of each
material region on BOUNDARY PATHS through a 2D Cartesian space.

In this way, the physical domain is broken down into REGION,
FEATURE and EXCLUDE subsections.

Every problem descriptor must have at least one REGION subsection.
FEATURE and EXLUDE subsections are optional.

 72

For concrete examples of the constructs described here, refer to the
sample problems distributed with the FlexPDE software.

4.11.1. Points

The fundamental unit used in building problem domains is the geometric
POINT. POINTS in a FlexPDE script are expressed as a parenthesized
list of coordinate values, as in then two dimensional point (2.4, 3.72).

Since two- and three- dimensional figures both begin with a two-
dimensional layout, the use for three-dimensional points is generally
limited to ELEVATION PLOTS.

In one-dimensional systems, a point can degenerate to a single
parenthesized coordinate, such as (2.4).

4.11.2. Boundary Paths

A boundary path has the general form

START(a,b) segment TO (c,d) ...

where (a,b) and (c,d) are the physical coordinates of the ends of the
segment, and segment is either LINE, SPLINE or ARC.

The path continues with a connected series of segments, each of which
moves the segment to a new point. The end point of one segment
becomes the start point of the next segment.

A path ends whenever the next input item cannot be construed as a
segment, or when it is closed by returning to the start point. The closing
segment may simply end at the start point, or it can explicitly reference
CLOSE, which will cause the current path to be continued to meet the
starting point:

... segment TO CLOSE.
or

... segment CLOSE.

 73

[Note: In prior versions, return to start was signaled by the word
FINISH. This form is still accepted by FlexPDE 5, but is deprecated
because of ambiguous implications.]

Line Segments

Line segments take the form
LINE TO (x,y)

When successive LINE segments are used, the reserved word LINE
does not have to be repeated, as in the following:

LINE TO (x1,y1) TO (x2,y2) TO (x3,y3) TO ...

Spline Segments
Spline segments are syntactically similar to Line segments

SPLINE TO (x,y) TO (x2,y2) TO (x3,y3) TO ...
A cubic spline will be fit to the listed points. The first point of
the spline will be either the START point or the ending point of
the previous segment. The last point of the spline will be the
last point stated in the chain of TO(,) points.
The fitted spline will have zero curvature at the end points, so
it is a good idea to begin and end with closely spaced points to
establish the proper endpoint directions. [4.1]

Arc Segments
Arc segments create either circular or elliptical arcs, and take
one of the following the forms:

ARC TO (x1,y1) to (x2,y2)
ARC (RADIUS = R) to (x,y)
ARC (CENTER = x1,y1) to (x2,y2)
ARC (CENTER = x1,y1) ANGLE=angle

Here angle is an angle measured in degrees, following the standard
convention that positive angles rotate counter-clockwise and negative
angles rotate clockwise. The coordinate point at the end of the arc is
determined by the radius swept out by the angle. To specify the angle
in radians, follow the radian value by the qualifier RADIANS.

When the form ARC (CENTER=x1,y1) to (x2,y2) is used and the
center (x1,y1) is not equidistant from the start and end points, an
elliptical arc segment is generated with major and minor axes along
the X and Y coordinate directions.

Example:

 74

START(0,0)
LINE TO (10,0) TO (10,10) TO (0,10) TO CLOSE

Named Paths

Names can be assigned to paths. When names are assigned to paths
they take the form of a quoted string and must be placed immediately
after the reserved word START:

START "namedpath" (<x> , <y>)

Assigned path names are useful when boundary or line-related
integrals are desired or for establishing paths over which ELEVATION
plots are desired.

4.11.3. Regions

A REGION is a portion of a two-dimensional problem domain (or of the
projection of a 3D problem domain), bounded by BOUNDARY PATHS,
that encloses an area and contains a single material (but see Regions in
One Dimension for exceptions).

Each material property in the REGION has a single definition, although
this definition may be arbitrarily complex.

A REGION may consist of many disjoint areas.

Example:

REGION 1 { an outer box }
START(0,0)
LINE TO (10,0) TO (10,10) TO (0,10) TO CLOSE

REGION 2 { with two embedded boxes }

START(1,1)
LINE TO (2,1) TO (2,2) TO (1,2) TO CLOSE
START(5,5)
LINE TO (6,5) TO (6,6) TO (5,6) TO CLOSE

Overlaying regions:

 75

REGIONS DEFINED LATER OVERLAY AND OBSCURE REGIONS
DEFINED EARLIER. AREAS COMMON TO TWO REGIONS EXIST
ONLY IN THE LATER DEFINED REGION.

So, in the example above, the two smaller boxes overlay the large box.
The material parameters assigned to the large box pertain only to the
part of the large box not overlaid by the small boxes.

It is customary to make the first region define the entire outer boundary
of the problem domain, and then to overlay the parts of the domain
which differ in parameters from this default region. If you overlay all
parts of the outer domain with subregions, then the outer region
definition becomes invisible. It may be useful to do this in some cases,
since it allows a localization of boundary condition specifications.
Nevertheless, one of the subregions is superfluous, because it could
be the default.

4.11.3.1. Reassigning Regional Parameters

Names previously defined in the DEFINITIONS section can be assigned
a new value within a REGION by adding one or more assignments of the
form

name = new_expression

immediately following the reserved word REGION.

When definitions are reassigned new values in this manner, the new
value applies only to the region in which the reassignment occurs.

Example:

DEFINITIONS
K = 1 { the default value }

REGION 1 { assumes default, since no override is given }
START(0,0) LINE TO (10,0) TO (10,10) TO (0,10) TO CLOSE

REGION 2
K = 2 { both sub-boxes are assigned K=2 }
START(1,1) LINE TO (2,1) TO (2,2) TO (1,2) TO CLOSE
START(5,5) LINE TO (6,5) TO (6,6) TO (5,6) TO CLOSE

 76

REGION 3 { again assumes the default }
START(3,3) LINE TO (4,3) TO (4,4) TO (3,4) TO CLOSE

4.11.3.2. Regions in One Dimension

In one-dimensional domains, the concept that a REGION bounds a finite
area by closing on itself is no longer true. In one dimension, it is
sufficient to define a path from the start of a material region to its finish.
(Referencing CLOSE in a 1D bounding path will cause serious troubles,
because the path will retrace itself.)

For example, the statements

REGION 1
START(0) LINE TO (5)

are sufficient to define a region of material extending from location 0 to
location 5 in the 1D coordinate system.

In order to maintain grammatical consistency with two- and three-
dimensional constructs, omitting the parentheses is not permitted.

Other general characteristics of REGIONS remain in force in one-
dimensional domains:
Later REGIONS overlay earlier REGIONS, material properties are
defined following the REGION keyword, and so forth.

4.11.3.3. Regions in Three Dimensions

The concept of a REGION in 3D domains retains the same character as
for 2D domains.

The REGION is a partition of the 2D projection of the figure, and is
extruded into the third dimension according to the EXTRUSION
specification.

 77

A material compartment in 3D is uniquely defined by the REGION of the
projection which bounds it, and the LAYER of the extrusion in which it
resides.

For further discussion of the 3D extensions of the BOUNDARIES
section, see the User Guide chapter Using FlexPDE in Three-
Dimensional Problems.

4.11.3.4. Regional Parameter Values in 3D

In three-dimensional problems, a redefinition of a parameter inside a
REGION causes the parameter to be redefined in all layers of the layer
stack above the region. To cause the parameter to be redefined only in
a selected layer, use the LAYER qualifier, as in

LAYER number name = new_expression
LAYER "layer_name" name = new_expression

The LAYER qualifier acts on all subsequent parameter redefinitions, until
a new LAYER qualifier or a functionally distinct clause breaks the group
of redefinitions.

Example:

The following descriptor fragment shows the redefinition of a
parameter K in various contexts:

DEFINITIONS
 K=1 { 1 }

BOUNDARIES
 LAYER 1 K=2 { 2 }
 REGION 1
 K=3 { 3 }
 LAYER 2 K=4 { 4 }
 START(0,0) LINE TO

Line { 1 } defines the default value.
Line { 2 } (valid only in 3D) defines the value in layer 1 of all regions.
Line { 3 } redefines the value in region 1 only, in all layers of a 3D
domain.
Line { 4 } (valid only in 3D) defines the value in layer 2 of region 1 only.

 78

4.11.3.5. Limited Regions in 3D

In three dimensional problems, many figures to not fit readily into the
extrusion model. In particular, there are frequently features that in reality
exist only at very restricted positions in the extrusion dimension, and
which create poor meshes when extruded throughout the domain.

FlexPDE implements the concept of LIMITED REGIONS to
accommodate this situation.

A LIMITED REGION is defined as one that is considered to exist only in
specified layers or surfaces of the domain, and is absent in all other
layers and surfaces.

The LIMITED REGION will be constructed only in layers and surfaces
specifically stated in the body of the REGION definition.

An example of this type of structure might be a transistor, where the
junction structure of the device is present only in a very thin layer of the
domain, while the substrate occupies the majority of the volume.

In earlier versions of FlexPDE, the shape of the junction structure was
propagated and meshed throughout the extrusion dimension.
In version 4, the structure can be restricted, or LIMITED, to a single layer
or a few layers.

For example, the following descriptor fragment defines a 3-unit cube with
a 0.2-unit cubical structure in the center. The small structure is present
in the layer 2 mesh only.

EXTRUSION Z=0, 1.4, 1.6, 3

BOUNDARIES

REGION 1
START(0,0) LINE TO (3,0) TO (3,3) TO (3,0) TO CLOSE

LIMITED REGION 2
LAYER 2 K=9
START(1.4,1.4)

 79

LINE TO (1.6,1.4) TO (1.6,1.6) TO (1.4,1.4) TO CLOSE

See the User Guide section "Limited Regions" for a graphical
example of this facility.

Examples:
Samples | Misc | 3D_Domains | 3D_Limited_Region.pde

4.11.3.6. Empty Layers in 3D

In three dimensional problems, it is sometimes necessary to define holes
or excluded regions in the extruded domain. This may be done using the
VOID qualifier. VOID has the syntax of a parameter redefinition.

For example, the following descriptor fragment defines a 3-unit cube with
a 1-unit cubical hole in the center:

EXTRUSION Z=0,1,2,3

BOUNDARIES

REGION 1
START(0,0) LINE TO (3,0) TO (3,3) TO (3,0) TO CLOSE

REGION 2
LAYER 2 VOID
START(1,1) LINE TO (2,1) TO (2,2) TO (1,2) TO CLOSE

Examples:
Samples | Misc | 3D_Domains | 3D_Void.pde

4.11.4. Excludes

EXCLUDE subsections are used to describe closed domains which
overlay parts of one or more REGION subsections. The domain
described by an exclude subsection is excluded from the system.
EXCLUDE subsections must follow the REGION subsections which they
overlay

 80

EXCLUDE subsections are formed in the same manner as REGION
subsections and can use all the same LINE and ARC segments.

4.11.5. Features

FEATURE subsections are used to describe non-closed entities which
do not enclose a subdomain with definable material parameters.

FEATURE subsections are formed in the same manner as REGION
subsections and can use all the same LINE and ARC segments.
FEATURE subsections do not end with the reserve word CLOSE.

A FEATURE will be explicitly represented by nodes and cell sides.

FEATURE subsections are used when a problem has internal line
sources; when it is desirable to calculate integrals along an irregular
path; or when explicit control of the grid is required.

In 3D problems, FEATURES should be used to delineate any sharp
breaks in the slope of extrusion surfaces. Unless mesh lines lie along
the surface breaks, the surface modeling will be crude.

Example:

REGION 1 { an outer box }
START(0,0) LINE TO (10,0) TO (10,10) TO (0,10) TO CLOSE

FEATURE { with a diagonal gridding line }

START(0,0) LINE TO (10,10)

4.11.6. Ordering Regions

While not strictly enforced, it is recommended that all REGION
subsections be listed before any EXCLUDE or FEATURE subsections
and that all EXCLUDE subsections be listed before any FEATURE
subsections.

 81

It is further recommended that the first REGION subsection be formed by
walking the outside boundary of the problem thereby enclosing the entire
domain of the problem.

REGIONS defined later are assumed to overlay any previously listed
REGIONs, and any properties assigned to a REGION will override
properties previously assigned to the domains they overlay.

4.11.7. Numbering Regions

REGION, EXCLUDE and FEATURE subsections can be assigned
numbers and/or names.

When numbers are assigned they should be in ascending sequential
order beginning with one. It is recommended that numbers always be
assigned.

When names are assigned they must take the form of a quoted string
and must be placed immediately after either the reserved word REGION,
EXCLUDE, or FEATURE or any number assigned to the REGION,
EXCLUDE, or FEATURE. Assigned names must be unique to the
REGION, EXCLUDE or FEATURE that they name.

Assigned region names are useful when region-restricted plots or volume
integrals are desired.

Example:

REGION 2 'Thing'
{...}

PLOTS

contour(u) on 'Thing'

4.11.8. Fillets and Bevels

Any point in a path may be followed by the specification FILLET(radius)
or BEVEL(length). The point will be replaced by a circular arc of the
specified radius, or by a bevel of the specified length. FILLETS and

 82

BEVELS should not be applied to points which are the intersection of
several segments, or confusion may ensue.

Example:

LINE TO (1,1) FILLET(0.01)

Example problem:

"Samples | Misc | Fillet.pde"

4.11.9. Boundary Conditions

The following forms of boundary condition specification may be applied
to boundary segments:

VALUE (variable) = Expression

NATURAL (variable) = Expression
LOAD (variable) = Expression

CONTACT (variable) = Expression

VELOCITY (variable) = Expression

NOBC (variable)

The variable designated in the boundary condition specification
identifies (by explicit association) the equation to which this boundary
condition is to be applied.

VALUE (Dirichlet) Boundary Conditions

A VALUE segment boundary condition forces the solution of the
equation for the associated variable to the value of Expression on a
continuous series of one or more boundary segments. The
Expression may be an explicit specification of value, involving only
constants and coordinates, or it may be an implicit relation involving
values and derivatives of system variables.

NATURAL (Generalized Flux) Boundary Conditions
NATURAL and LOAD segment boundary conditions are synonymous.
They represent a generalized flux boundary condition derived from the
divergence theorem. The Expression may be an explicit

 83

specification, involving only constants and coordinates, or it may be an
implicit relation involving values and derivatives of system variables.
The Natural boundary condition reduces to the Neumann boundary
condition in the special case of the Poisson equation. See the User
Guide chapter Natural Boundary Conditions for information on the
implementation of Natural boundary conditions.

CONTACT (Discontinuous Variable) Boundary Conditions

See "Jump Boundaries" in the next section.

VELOCITY (Time Derivative) Boundary Conditions

This boundary condition imposes a specified time derivative on a
boundary value (time-dependent problems only). This condition is
especially useful in specifying moving boundaries, by applying it to the
surrogate coordinate variable. If you have declared a velocity variable
which is applied to a coordinate, then you should lock the surrogate
coordinate to the mesh velocity variable at the boundary using a
VELOCITY() boundary condition.

Terminating the current BC

NOBC(VARIABLE) is used to turn off a previously specified boundary
condition on the current path. It is equivalent in effect to
NATURAL(VARIABLE)=0 (the default boundary condition), except
that it will not lead to "Multiple Boundary Condition Specification"
diagnostics.

[Note:

The NEUMANN, DNORMAL and DTANGENTIAL boundary conditions
supported in earlier versions have been deleted due to unreliable
behavior. They may be restored in later versions. In most cases,
derivative boundary conditions are more appropriately applied through
the NATURAL boundary condition facility.] [4.2.0]

4.11.9.1. Syntax of Boundary Condition Statements

Segment boundary conditions are added to the problem descriptor by
placing them in the BOUNDARIES section.

Segment boundary conditions must immediately precede one of the
reserved words LINE or ARC and cannot precede the reserved word TO.

 84

A top-down system is used for applying segment boundary conditions to
the equations. Following the START point specification in each path
definition, a segment boundary condition is set up for each
variable/equation. It is recommended that a boundary condition be
specified for each variable/equation. If no other segment boundary
condition is specified no error will occur and a NATURAL(VARIABLE) =
0 segment boundary condition is assumed.

Under the top-down system, as boundary segments occur, the previously
specified segment boundary condition will continue to hold until a new
boundary condition is specified.

If the recommendation is followed that REGION 1 be formed by walking
the outside boundary of the problem, thereby enclosing the entire
domain of the problem, then for most problems segment boundary
conditions need only be specified for the segments in REGION 1.

4.11.9.2. Point Boundary Conditions

POINT VALUE boundary conditions can be added by placing

POINT VALUE (variable) = expression

following a coordinate specification. The stated value will be imposed
only on the coordinate point immediately preceding the specification.

POINT LOAD boundary conditions can be added by placing

POINT LOAD (variable) = expression

following a coordinate specification. The stated load will be imposed as
a lumped source on the coordinate point immediately preceding the
specification.

A Caveat:

The results achieved by use of these specifications are frequently
disappointing.

A diffusion equation, for example, div(grad(u))+s=0, can support
solutions of the form u=A-Br-Cr^2, where r is the distance from the
point value and A, B and C are arbitrary constants. By the

 85

superposition principle, FlexPDE is free to add such shapes to the
computed solution in the vicinity of the point value, without violating the
PDE. A POINT VALUE condition usually leads to a sharp spike in the
solution, pulling the value up to that specified, but otherwise leaving
the solution unmodified.

The POINT LOAD is not subject to this same argument, but since it is
a load without scale, it will frequently produce a dense mesh
refinement around the point.

A better solution is to use a distributed load or an extended value
boundary segment, ring or box.

4.11.9.3. Boundary conditions in 1D

The idea that a boundary condition applies along the length of a
boundary segment, while meaningful in two and three dimensions, is
meaningless in one dimension, since it is the value along the segment
that is the object of the computation.

In one dimensional problems, therefore, it is necessary to use the Point
boundary condition described in the previous section for all boundary
condition specifications.

Example:

BOUNDARIES

REGION 1
START(0) POINT VALUE(u)=1
LINE TO (5) POINT LOAD(u)=4

4.11.9.4. Boundary Conditions in 3D

In three-dimensional problems, an assignment of a segment boundary
condition to a region boundary causes that boundary condition to be
applied to the "side walls" of all layers of the layer stack above the
region. To selectively apply a boundary condition to the "side walls" of
only one layer, use the LAYER qualifier, as in

LAYER number VALUE(variable) = expression
LAYER "layer_name" VALUE(variable) = expression

 86

The LAYER qualifier applies to all subsequent boundary condition
specifications until a new LAYER qualifier is encountered, or the
segment geometry (LINE or ARC) statements begin.

The boundary conditions on the extrusion surfaces themselves (the
slicing surfaces) can be specified by the SURFACE qualifier preceding
the boundary condition specification.

Consider a simple cube. The EXTRUSION and BOUNDARIES sections
might look like this:

EXTRUSION z = 0,1

BOUNDARIES

SURFACE 1 VALUE(U)=0 { 1 }
REGION 1

SURFACE 2 VALUE(U)=1 { 2 }
START(0,0)
NATURAL(U)=0 { 3 }

LINE TO (1,0)
LAYER 1 NATURAL(U)=1 { 4 }

LINE TO (1,1)
NATURAL(U)=0 { 5 }

LINE TO (0,1) TO CLOSE

Line { 1 } specifies a fixed value of 0 for the variable U over the entire
surface 1 (ie. the Z=0 plane).
Line { 2 } specifies a value of 1 for the variable U on the top surface in
region 1 only.
Line { 3 } specifies an insulating boundary on the Y=0 side wall of the
cube.
Line { 4 } specifies a flux (whose meaning will depend on the PDE) on
the X=1 side wall in layer 1 only.
Line { 5 } returns to an insulating boundary on the Y=1 and X=0 side
walls.

[Of course, in this example the restriction to region 1 or layer 1 is
meaningless, because there is only one of each.]

 87

4.11.9.5. Jump Boundaries

In the default case, FlexPDE assumes that all variables are continuous
across internal material interfaces. This is a consequence of the
positioning of mesh nodes along the interface which are shared by the
cells on both sides of the interface.

FlexPDE 5 supports the option of making variables discontinuous at
material interfaces (see the "Discontinuous Variables" in the User Guide
for tutorial information).

This capability can be used to model such things as contact resistance,
or to completely decouple the variables in adjacent regions.

The key words in employing this facility are CONTACT and JUMP.

The conceptual model is that of contact resistance, where the difference
in voltage V across the interface (the JUMP) is given by

V2 - V1 = R*current

In the general case, the role of "current" is played by the generalized flux,
or Natural boundary condition. (See the User Guide for further
discussion of Natural Boundary Conditions.) The CONTACT boundary
condition is a special form of NATURAL, which defines a flux but also
specifies that FlexPDE should model a double-valued boundary.

So the method of specifying a discontinuity is

CONTACT(V) = (1/R)*JUMP(V)

"CONTACT(V)", like "NATURAL(V)", means the outword normal
component of the generalized flux as seen from any cell. So from any
cell, the meaning of "JUMP(V)" is the difference between the interior and
exterior values of V at a point on the boundary. Two cells sharing a
boundary will then see JUMP values and outward normal fluxes of
opposite sign. "Flux" is automatically conserved, since the same
numeric value is used for the flux in both cells.

Specifying a CONTACT boundary condition at an internal boundary
causes duplicate mesh nodes to be generated along the boundary, and
to be coupled according to the JUMP boundary condition statement.

Specifying a very small (1/R) value effectively decouples the variable
across the interface.

 88

Example Problems:

"Samples | Misc | Discontinuous_Variables |
Thermal_Contact_Resistance.pde"
"Samples | Misc | Discontinuous_Variables |
Contact_Resistance_Heating.pde"
"Samples | Misc | Discontinuous_Variables |
Transient_Contact_Resistance_Heating.pde"

4.11.9.6. Periodic Boundaries

FlexPDE supports periodic and antiperiodic boundary conditions in two
or three dimensions.

Periodicity in the X-Y Plane

Periodicity in a two-dimensional problem, or in the extrusion walls of a
three-dimensional problem, is invoked by the PERIODIC or
ANTIPERIODIC statement.

The PERIODIC statement appears in the position of a boundary
condition, but the syntax is slightly different, and the requirements and
implications are more extensive.

The syntax is:

PERIODIC (X_mapping, Y_mapping)
ANTIPERIODIC (X_mapping, Y_mapping)

The mapping expressions specify the arithmetic required to convert a
point (X,Y) in the immediate boundary to a point (X',Y') on a remote
boundary. The mapping expressions must result in each point on the
immediate boundary being mapped to a point on the remote boundary.
Segment endpoints must map to segment endpoints. The
transformation must be invertible; do not specify constants as mapped
coordinates, as this will create a singular transformation.

The periodic boundary statement terminates any boundary conditions
in effect, and instead imposes equality of all variables on the two

 89

boundaries. It is still possible to state a boundary condition on the
remote boundary, but in most cases this would be inappropriate.

The periodic statement affects only the next following LINE or ARC
path. These paths may contain more than one segment, but the next
appearing LINE or ARC statement terminates the periodic condition
unless the periodic statement is repeated.

Periodicity in the Z-Dimension

Periodicity In the extruded dimension is invoked by the modifier
PERIODIC or ANTIPERIODIC before the EXTRUSION statement, for
example,

PERIODIC EXTRUSION Z=0,1,2

In this case, the top and bottom extrusion surfaces are assumed to be
conformable, and the values are forced equal (or sign-reversed) along
these surfaces.

Restrictions

Each node in the finite element mesh can have at most one periodic
image. This means that two-way or three-way periodicity cannot be
directly implemented. Usually it is sufficient to introduce a small gap in
the periodic boundaries, so that each corner is periodic with only one
other corner of the mesh.

Example Problems:

"Samples | Misc | Periodicity | periodic.pde"
"Samples | Misc | Periodicity | periodaz.pde"
"Samples | Misc | Periodicity | antiperiodic.pde"
"Samples | Misc | Periodicity | 3d_xperiodic.pde"
"Samples | Misc | Periodicity | 3d_zperiodic.pde"
"Samples | Misc | Periodicity | 3d_antiperiodic.pde"

 90

4.11.10. Fixed Points

Arbitrary points within a 2D problem domain can be designated for
special treatment by the statement

FIXED POINT (X,Y)

The stated point will be represented by a mesh node, and may effect the
density of mesh nodes in its neighborhood.

POINT VALUE and POINT LOAD boundary conditions may be applied
to FIXED POINTs

[Note: This facility is not yet fully implemented in 3D.]

4.12. Front

The FRONT section is used to define additional criteria for use by the
adaptive regridder. In the normal case, FlexPDE repeatedly refines the
computational mesh until the estimated error in the approximation of the
PDE's is less than the declared or default value of ERRLIM. In some
cases, where meaningful activity is confined to some kind of a
propagating front, it may be desirable to enforce greater refinement near
the front. In the FRONT section, the user may declare the parameters of
such a refinement.

The FRONT section has the form:

FRONT (criterion, delta)

The stated criterion will be evaluated at each node of the mesh. Cells
will be split if the values at the nodes span a range greater than (-
delta/2, delta/2) around zero.

That is, the grid will be forced to resolve the criterion to within delta as it
passes through zero.

Example:

Samples | Misc | Front.pde

 91

4.13. Resolve

The RESOLVE section is used to define additional criteria for use by the
adaptive regridder. In the normal case, FlexPDE repeatedly refines the
computational mesh until the estimated error in the approximation of the
PDE's is less than the declared or default value of ERRLIM. In some
cases, this can be achieved with a much less dense mesh than is
necessary to make pleasing graphical presentation of derived quantities,
such as derivatives of the system variables, which are much less smooth
than the variables themselves. In the RESOLVE section, the user may
declare one or more additional functions whose detailed resolution is
important. The section has the form:

RESOLVE (spec1) , (spec2) , (spec3) {...}

Here, each spec may be either an expression, such as "(shear_stress)",
or an expression followed by a weighting function, as in "(shear_stress,
x^2)".

In the simplest form, only the expressions of interest need be presented.
In this case, for each stated function, FlexPDE will

• form a Finite Element interpolation of the stated function over the
computational mesh

• find the deviation of the interpolation from the exact function
• split any cell where this deviation exceeds ERRLIM times the global

RMS value of the function.

In the weighted form, an importance-weighting function is defined,
possibly to restrict the effective domain of resolution. The splitting
operation described above is modified to multiply the deviation at each
point by the weight function at that point. Areas where the weight is small
are therefore subjected to a less stringent accuracy requirement.

Example:
 Samples | Misc | Resolve.pde

 92

4.14. Time

The TIME section is used in time dependent problem descriptors to
specify a time range over which the problem is to be solved. It supports
the following alternative forms:

FROM time1 TO time2
FROM time1 BY increment TO time2
FROM time1 TO time2 BY increment

Where:
time1 is the beginning time
time2 is the ending time.
increment is an optional specification of the initial

time step for the solution. (the default
initial time step is 1e-4*(time2-time1)).

All time dependent problem descriptors must include statements which
define the time range.
While the problem descriptor language supports alternate methods of
specifying a time range, it is recommended that all time dependent
problems include the TIME section to specify the total time domain of
the problem.

Halting Execution
The time range specification may optionally be followed by a HALT
statement:

HALT minimum

This statement will cause the computation to halt if the automatically
controlled timestep drops below minimum. This facility is useful when
inconsistencies in data or discontinuities in parameters cause the
timestep controller to become confused.

HALT condition

Here the condition can be any relational operation, such as
globalmax(myvariable) < 204. If the condition is met on any timestep,
the computation will be halted.

 93

4.15. Monitors and Plots

The MONITORS section, which is optional, is used to list the graphic
displays desired at intermediate steps while a problem is being solved.

The PLOTS section, which is optional, is used to list the graphic
displays desired on completion of a problem or stage, or at selected
problem times.

PLOTS differ from MONITORS in that they are written to the permanent
.PG4 record for viewing after the run is completed.
(For debugging purposes the global selector HARDMONITOR can be
used to force MONITORS to be written to the .PG4 file.)

Plot statements and Monitor statements have the same form and
function.

The basic form of a PLOT or MONITOR statement is:

display_specification (plot_data) display_modifiers

display_specification must be one of the known plot types, as
described in the next section.
In some cases, multiple plot_data arguments may be provided.
There may be any number of display_modifiers, with meanings
determined by the display_specification.
The various display_modifiers supported by FlexPDE are listed in the
"Graphic Display Modifiers" section.

An Exhortation:

The MONITORS facility has been provided to allow users to see
immediate feedback on the progress of their computation, and to
display any and all data that will help diagnose failure or
misunderstanding. Please use MONITORS extensively, especially in
the early phases of model development! Since they do not write to the
.pg4 storage file, they can be used liberally without causing disk file
bloat. After the model is performing successfully, you can remove
them or comment them out. Many user pleas for help recieved by
PDE Solutions could be avoided if the user had included enough
MONITORs to identify the cause of trouble.

 94

Examples:

Samples|Misc|Plottest.pde
[Note: All example problems contain PLOTS and MONITORS].

4.15.1. Graphics Display and Data Export
Specifications

The MONITORS or PLOTS sections can contain one or more display
specifications of the following types:

CDF (arg1 [,arg2,...])

Requests the export of the listed values in netCDF version 3 format.
The output will be two or three dimensional, following the current
coordinate system or subsequent ON SURFACE modifiers. The
included domain can be zoomed. If the FILE modifier does not follow,
then the output will be written to a file "<problem>_<sequence>.cdf".
Staged, eigenvalue and time-dependent problems will stack
subsequent outputs in the same file, consistent with netCDF
conventions. CDF uses a regular rectangular grid, so interface
definition may be ragged. Use ZOOM to show details.

CONTOUR (arg)

Requests a two dimensional contour map of the argument, with levels
at uniform intervals of the argument.

CONTOUR (arg1, arg2)

Requests a two dimensional contour map of both arg1 and arg2, each
with levels at independent uniform intervals. The displayed level table
pertains only to arg1, and contours of arg2 are not tagged.

ELEVATION (arg1, [arg2,...]) path

Requests a two dimensional display (some times called a line-out)
which displays the value of its argument(s) vertically and the value of
its path horizontally. Each ELEVATION listed must have at least one
argument and may have multiple arguments separated by commas.
path can be either a line segment specified using the forms FROM
(X1,Y1) TO (X2,Y2) or ON name, where name is a literal string
selecting a path named in the BOUNDARIES section.

 95

GRID (arg1, arg2)

Requests a two dimensional plot of the computation grid, with nodal
coordinates defined by the two arguments. Grids are especially useful
for displaying material deformations. (In 3D problems, a two-argument
GRID plot will show a cut-plane, and must be followed by an ON
specification. 3D cut plane grid plots do not necessarily accurately
represent the computational grid.)

GRID (arg1, arg2, arg3)

Requests a three dimensional plot of the computation grid, with nodal
coordinates defined by the three arguments. Only the outer surface of
the grid will be drawn. This plot can be interactively rotated, as with
SURFACE plots.

SUMMARY

This plot type defines a text page on which only REPORT items may
appear. A SUMMARY page can be EXPORTed to produce text
reports of scalar values.

SUMMARY ('string')

If a string argument is given with a SUMMARY command, it will
appear as a page header on the summary page.

SURFACE (arg)

A quasi three dimensional surface which displays its argument
vertically. If no VIEWPOINT clause is used, the viewing azimuth
defaults to 216 degrees, the distance to three times the size, and the
viewing elevation to 30 degrees.

TABLE (arg1 [,arg2,...])

Requests the export of the listed values in tabular ASCII format. The
output will be two or three dimensional, following the current
coordinate system or subsequent ON modifiers. The included domain
can be zoomed. If the FILE modifier does not follow, then the output
will be written to a file "<problem>_<sequence>.tbl". Staged,
eigenvalue and time-dependent problems will create separate files for
each stage or mode, with additional sequencing numbers in the name.
TABLE output uses a regular rectangular grid, so interface definition
may be lost. Use ZOOM to show details.

TECPLOT (arg1 [,arg2,...])

 96

Requests the export of the listed values to a file readable by the
TecPlot visualization system. The output will be two or three
dimensional, following the current coordinate system. The entire mesh
is exported. If the FILE modifier does not follow, then the output will be
written to a file "<problem>_<sequence>.dat". Staged, eigenvalue and
time-dependent problems will stack subsequent outputs in the same
file, consistent with TecPlot conventions. TecPlot uses the actual
triangular or tetrahedral computation mesh (subdivided to linear basis),
so material interfaces are preserved.

TRANSFER (arg1 [,arg2,...])

Requests the export of the listed values and finite element mesh data
in a file readable by FlexPDE using the TRANSFER or
TRANSFERMESH input command. This method of data transfer
between FlexPDE problems retains the full accuracy of the
computation, without the error introduced by the rectangular mesh of
the TABLE function. The exported domain cannot be zoomed. If the
FILE modifier does not follow, then the output will be written to a file
"<problem>_<sequence>.dat". Staged, eigenvalue and time-
dependent problems are not supported. This export format uses the
actual computation mesh, so material interfaces are preserved. The
full computation mesh is exported.

VECTOR (vector)

Requests a two dimensional display of directed arrows in which the
direction and magnitude of the arrows is set by the vector argument.
The origin of each arrow is placed at its reference point.

VECTOR (arg1, arg2)

Requests a two dimensional display of directed arrows in which the
horizontal and vertical components of the arrows are given by arg1
and arg2. The origin of each arrow is placed at its reference point.

VTK (arg1 [,arg2,...])

Requests the export of the listed values to a file in VTK (Visualization
Tool Kit) format for display by visualization systems such as VisIt. The
output will be two or three dimensional, following the current
coordinate system. The entire mesh is exported. If the FILE modifier
does not follow, then the output will be written to a file
"<problem>_<sequence>.vtk". Staged, eigenvalue and time-dependent
problems will produce a family of files distinguished by the sequence
number. VTK format uses the actual triangular or tetrahedral
computation mesh, so material interfaces are preserved. The VTK

 97

format supports quadratic finite element basis directly, but not cubic.
To export from cubic-basis computations, use VTKLIN. [4.1]

VTKLIN (arg1 [,arg2,...])

Produces a VTK format file in which the native cells of the FlexPDE
computation have been converted to a set of linear-basis finite element
cells. This command may be used to export to VTK visualization tools
from cubic-basis FlexPDE computations, or in cases where the
visualization tool does not support quadratic basis.

For all commands, the argument(s) can be any valid expression.

4.15.2. Graphic Display Modifiers

The appearance of any display can be modified by adding one or more
of the following clauses:

AREA_INTEGRATE

Causes CONTOUR and SURFACE plots in cylindrical geometry to be
integrated with dr*dz element, rather than default 2*pi*r*dr*dz volume
element.

AS 'string'

Changes the label on the display from the evaluated expression to
string.

BLACK

Draws current plot in black color only.

BMP
BMP (pixels)
BMP (pixels, penwidth)

Selects automatic creation of a graphic export file in BMP format.
pixels is the horizontal pixel count, which defaults to 1024 if omitted.
penwidth is an integer (0,1,2 or 3) which specifies the width of the
drawn lines, in thousandths of the drawing width (0 means thin). The
export file name is the problem name with plot number and sequence
number appended. The file name cannot be altered.

DROPOUT

 98

Marks EXPORT and TABLE output points which fall outside the
problem domain as "external", for compatibility with versions prior to
2.21. This modifier affects only EXPORTS and TABLES with
FORMAT strings (see below).

EMF
EMF (pixels)
EMF (pixels, penwidth)

Windows version only. Produces a Microsoft Windows Enhanced
Metafile output. pixels is the horizontal pixel count of the reference
window, which defaults to 1024 if omitted. penwidth is an integer
(0,1,2 or 3) which specifies the width of drawn lines, in thousandths of
the drawing width (0 means thin). The export file name is the problem
name with plot number and sequence number appended. The file
name cannot be altered. (Warning: FlexPDE uses Windows rotated
fonts to plot Y-labels and axis labels on surface plots. Microsoft Word
can read and resize these pictures, but its picture editor cannot handle
them, and immediately "rectifies" them to horizontal.)

EPS

Produces an Encapsulated PostScript output. The graphic is a 10x7.5
inch landscape-mode format with 7200x5400 resolution.

EXPORT

Causes a disk file to be written containing the data represented by the
associated MONITOR or PLOT. A regular rectangular grid will be
constructed, and the data will be printed in a format suitable for
reading by the FlexPDE TABLE function. The dimension of the grid
will be determined by the plot grid density appropriate to the type of
plot. (This is a renaming of the older PRINT modifier) The format of
EXPORTED data may be controlled by the FORMAT modifier (see
below).

EXPORT (n)

Modifies the EXPORT command by specifying the dimension of the
printed data grid. For two- or three-dimensional plots, the grid will be
(n x n) or (n x n x n).

EXPORT (nx, ny)

Modifies the EXPORT command by specifying the dimension of the
printed data grid.

EXPORT (nx, ny, nz)

 99

Modifies the EXPORT command by specifying the dimension of the
printed data grid.

FILE 'string'

Overrides the default naming convention for files created by the
EXPORT or PRINT modifiers, and writes the file named 'string'
instead.

FIXED RANGE (arg1, arg2)

Changes the dynamically set range used for the variable axis to a
minimum value of arg1 and a maximum of arg2. Data outside this
range is not plotted. (See also: RANGE, below)

FORMAT 'string'

This modifier replaces the default format of the EXPORT or PRINT
modifiers, or of the TABLE output command. When this modifier
appears, the output will consist of one line for each point in the export
grid. The contents of this line will be completely controlled by the
format string as follows:
• all characters except "#" will be copied literally to the output line.
• "#" will be interpreted as an escape character, and various options

will be selected by the character following the "#":
• #x, #y, #z and #t will print the value of the spatial coordinates or

time of the data point;
• #1 through #9 will print the value of the corresponding element of

the plot function list;
• #b will write a taB character;
• #r will cause the remainder of the format string to be repeated for

each plot function in the plot list;
• #i inside a repeated string will print the value of the current

element of the plot function list.
See the example problems "export_format" and "export_history".

FRAME (X, Y, Wide, High)

Forces the plot frame to the specified coordinates, regardless of the
size of the problem domain. This allows the creation of consistently-
sized plots in moving-mesh problems. See "Samples | Moving_Mesh |
Piston.pde".

GRAY

Draws current plot with a 32-level gray scale instead of the default
color palette.

 100

INTEGRATE
Causes a report of the integral under the plotted function. For
CONTOUR and SURFACE plots, this is a volume integral (with
Cartesian element dx*dy*1 or cylindrical element 2*pi*r*dr*dz). For
ELEVATIONS, it is a surface integral (with Cartesian element dl*1 and
cylindrical element 2*pi*r*dl). (See also Area_Integrate,
Line_integrate).
This integral differs from a REPORT(INTEGRAL(...)) in that this
command will integrate on the plot grid, while the REPORT will
integrate on the computation grid.
This modifier can be globally imposed by use of PLOTINTEGRATE in
the SELECT section.

LINE_INTEGRATE

Causes ELEVATIONS in cylindrical geometry to be integrated with dl
element, rather than default 2*pi*r*dl element.
(See also: Integrate, Area_Integrate)

LOG
LINLOG
LOGLIN
LOGLOG

Changes the default linear scales used to those specified by the
scaling command. LOG is the same as LINLOG, and specifies
logarithmic scaling in the data coordinate.

<lx><ly><lz>

Changes the default linear scales used to those specified by the
scaling command. Each of <lx>, <ly> and <lz> can be either LIN or
LOG, and controls the scaling in the associated dimension.

LOG (number)
...combinations as above

Limits the number of decades of data displayed to <number>. This
effect can also be achieved globally by the Selector LOGLIMIT.

MERGE

Sends EXPORT output for all stages or plot times to a single output
file. (This is the default for TECPLOT output). This option can be set
globally by SELECT PRINTMERGE.

MESH

 101

In SURFACE plots, causes the surface to be displayed as a hidden-
line drawing of the meshed surface. This display is more suitable on
some hardcopy devices.

NOHEADER

Deletes the problem-identification header from EXPORT output.

NOMERGE

Sends EXPORT output for each stage or plot time to a separate output
file. (This is the default for EXPORT output).

NOMINMAX
Deletes "o" and "x" marks at min and max values on contour plot.

NORM

In VECTOR plots, causes all vectors to be drawn with the same
length. Only the color identifies different magnitudes.

NOTAGS

Suppresses labelling tags on contour or elevation plot. This can be
applied globally with SELECT NOTAGS.

NOTIPS

Plots VECTORS as line segments without heads. The line segment
will be centered on the reference point.

ON "name"
ON LAYER number
ON LAYER "name"
ON REGION number
ON REGION "name"
ON SURFACE number
ON SURFACE "name"
ON equation

Displays will be restricted to the selected region, surface or layer. See
"Controlling the Plot Domain".

PAINTED

Fills areas between contour lines with color. (This is slower than
conventional contour lines.)

PAINTMATERIALS
PAINTREGIONS

 102

Draw color-filled grid plot. These local flags are equivalent to and
override the corresponding global flags set in the SELECT section.
They affect only the current plot.

PNG
PNG (pixels)
PNG (pixels, penwidth)

Selects automatic creation of a graphic export file in PNG format.
"pixels" is the horizontal pixel count, which defaults to 1024 if omitted.
"penwidth" is an integer (0,1,2 or 3) which specifies the width of the
drawn lines, in thousandths of the pixel width (0 means thin). The
export file name is the problem name with plot number and sequence
number appended. The file name cannot be altered.

POINTS = n

Overrides the default plot grid size and uses n instead. Two and three
dimensional exports will use n in all dimensions.

POINTS = (nx , ny)

For two-dimensional export commands, the two-dimensional grid can
be explicitly controlled.

POINTS = (nx, ny, nz)

For three-dimensional exports, the three-dimensional grid can be
explicitly controlled.

PPM
PPM (pixels)
PPM (pixels, penwidth)

Selects automatic creation of a graphic export file in PPM format.
"pixels" is the horizontal pixel count, which defaults to 1024 if omitted.
"penwidth" is an integer (0,1,2 or 3) which specifies the width of the
drawn lines, in thousandths of the pixel width (0 means thin). The
export file name is the problem name with plot number and sequence
number appended. The file name cannot be altered.

PRINT

Equivalent to EXPORT

PRINT (n)

Equivalent to EXPORT(n)

PRINT (nx, ny)

 103

Equivalent to EXPORT(nx,ny)

PRINT (nx, ny, nz)

Equivalent to EXPORT(nx,ny,nz)

RANGE (arg1, arg2)

Changes the dynamically set range used for the variable axis to a
minimum value of arg1 and a maximum of arg2. If the calculated
value of the variable falls outside of the range argument, the range
argument is ignored and the dynamically calculated value is used.
(See also: Fixed Range)

VIEWPOINT(X, Y, angle)

With SURFACE() plots, the VIEWPOINT modifier sets the viewing
azimuth and perspective distance and the viewing elevation angle.

VOL_INTEGRATE

Causes CONTOURS and SURFACE plots in cylindrical geometry to
be integrated with 2*pi*r*dr*dz element. This is the default, and is
equivalent to INTEGRATE. (See also: Integrate, Area_Integrate)

XPM
XPM (pixels)
XPM (pixels, penwidth)

Selects automatic creation of a graphic export file in XPM format.
"pixels" is the horizontal pixel count, which defaults to 1024 if omitted.
"penwidth" is an integer (0,1,2 or 3) which specifies the width of the
drawn lines, in thousandths of the pixel width (0 means thin). The
export file name is the problem name with plot number and sequence
number appended. The file name cannot be altered.

ZOOM (X, Y, Wide, High)

Expands (zooms) a selected area of the display or export, with (X,Y)
defining the lower left hand corner of the area and (Wide,High)
defining the extent of the expanded area. In 3D cut planes, the X and
Y coordinates refer to the horizontal and vertical dimensions in the cut
plane.

ZOOM (X, Y, Z, Xsize, Ysize, Zsize)

Expands (zooms) a selected volume of an export, with (X,Y,Z) defining
the lowest corner of the volume and (Xsize,Ysize,Zsize) defining the
extent of the included volume.

 104

4.15.3. Controlling the Plot Domain

"ON" selectors

The primary mechanism for controlling the domain over which plot
data are constructed is the "ON" statement, which has many forms:

ON "name"
ON REGION "name"
ON REGION number

In three-dimensional problems, the following are also meaningful:

ON LAYER "name"
ON SURFACE "name"
ON LAYER number
ON SURFACE number
ON equation

The first form selects a boundary path, region, layer or surface
depending on the definition of the "name". (It is actually redundant to
specify SURFACE "name", etc, since the fact that a surface is being
specified should be clear from the "name" itself. Nevertheless, the
forms are acceptable.)

In many cases, particularly in 3D, more than one "ON" clause can be
used for a single plot, since each "ON" clause adds a restriction to
those already in effect. There is a direct correspondence between the
"ON" clauses of a plot statement and the arguments of the various
INTEGRAL operators, although some of the allowable integral
selections do not have valid corresponding plot options.

In two dimensional geometries, area plots which are not otherwise
restricted are assumed to be taken over the entire problem domain.

Contours, Surface Plots, Grid Plots and Vector Plots

Contours. "surfaces" (3D topographic displays), grid plots and vector
plots must be taken on some kind of two dimensional data surface, so
in 3D problems these plot commands are incomplete without at least
one "ON" clause. This can be an extrusion-surface name, or a cut-
plane equation (it cannot be a projection-plane boundary path). For
example, in a 3D problem,

 105

CONTOUR(...) ON SURFACE 2
requests a contour plot of data evaluated on the second extrusion
surface.

CONTOUR(...) ON SURFACE "top"
requests a contour plot of data evaluated on the extrusion surface
named "top".

CONTOUR(...) ON X=Y
requests a contour plot of data evaluated on the cut plane where
x=y.

In addition to a basic definition of the data surface, "ON" clauses may
be used to restrict the display to an arbitrary REGION or LAYER. In
2D, a REGION restriction will display only that part of the domain
which is in the stated region:

CONTOUR(...) ON REGION 2

requests a contour plot of data evaluated on REGION 2.

Similarly, in 3D,

CONTOUR(...) ON SURFACE 2 ON REGION 2
requests a contour plot of data evaluated on extrusion surface 2,
restricted to that part of the surface lying above REGION 2 of the
baseplane projection.

CONTOUR(...) ON SURFACE 2 ON REGION 2 ON LAYER 3

requests a contour plot of data evaluated on extrusion surface 2,
restricted to that part of the surface lying above REGION 2 of the
baseplane projection, and with the evaluation taken in layer 3,
which is assumed to be bounded by the selected surface.

.

Cut Planes in 3D

Contours, surface plots and vector plots can also be specified on cut
planes by giving the general formula of the cutting plane:

CONTOUR(...) ON X = expression

requests a contour plot of data evaluated on the Y-Z plane where
X is the specified value.

Cut planes need not be simple coordinate planes:

 106

CONTOUR(...) ON X=Y
requests a contour plot of data evaluated on the plane containing
the z-axis and the 45 degrees line in the XY plane.

The coordinates displayed in oblique cut planes have their origin at the
point of closest approach to the origin of the domain coordinates. The
axes are chosen to be aligned with the nearest domain coordinate
axes.

Elevation Plots

Elevation plots can be specified by endpoints of a line:

ELEVATION(...) FROM (x1,y1) TO (x2,y2)
ELEVATION(...) FROM (x1,y1,z1) TO (x2,y2,z2)

The plot will be displayed on the straight line connecting the specified
endpoints. These endpoints might span only a small part of the
problem domain, or they might exceed the domain dimensions
somewhat, in which case the plot line will be truncated to the interior
portion.

In 2D geometry only, an elevation plot may be specified by the name
of a boundary path, as in

ELEVATION(...) ON "outer_boundary"

These boundary-path elevations can be additionally restricted as to the
region in which the evaluation is to be made:

ELEVATION(...) ON "inner_boundary" ON REGION "core"

This form requests that the evaluation of the plot function be made in
the region named "core", with the assumption that "core" is one of the
regions adjoining the "inner_boundary" path.

Sign of Vector Components

In many cases, boundary-path elevations present normal or tangential
components of vectors. For these applications, the sense of the

 107

direction is the same as the sense of the NATURAL boundary
condition:

 The positive normal is outward from the evaluation region.
 The positive tangent is counter-clockwise with respect to the
evaluation region.

Plots of the normal components of vectors on extrusion surfaces in 3D
follows the same rule:

 The positive normal is outward from the evaluation region.

4.15.4. Reports

Any display specification can be followed by one or more of the following
clauses to add report quantities to the plot page:

REPORT expression
Adds to the bottom of a display the text 'text of expression=value of
expression', where expression is any valid expression, possibly
including integrals. Multiple REPORT clauses may be used.
REPORT is especially useful for reporting boundary and area
integrals and functions thereof.

REPORT expression AS 'string'

A labeled REPORT of the form 'string=value of expression'.

REPORT('string')
REPORT 'string'

Inserts 'string' into the REPORT sequence.

4.15.5. Window Tiling

When multiple MONITORS or PLOTS are listed, FlexPDE displays each
one in a separate window and automatically adjusts the window sizes to
tile all the windows on the screen. Individual windows cannot be
independently expanded or iconized. Any plot window can be
maximized by double-clicking, or by right-clicking to bring up a menu.

 108

In steady-state and eigenvalue problems, MONITORS are displayed
during solution, and are replaced by PLOTS on completion.

In time-dependent problems, MONITORS, PLOTS and HISTORIES are
displayed at all times.

4.15.6. Monitors in Steady State Problems

In steady state problems the listed MONITORS are displayed after each
regrid. In addition, after each Newton-Raphson iteration of a nonlinear
problem or after each residual iteration of a linear problem, if sufficient
time has elapsed since the last monitor display, an interim set of
monitors will be displayed.

4.15.7. Monitors and Plots in Time Dependent
Problems

In time dependent problems the display specifications must be preceded
by a display-time declaration statement. The display-time declaration
statement may be either of the form

FOR CYCLE = number

in which case the displays will be refreshed every number time steps, or

FOR T = timeset1 [timeset2 ...]

Where each timeset may be either a specific time or a group specified
as

 t1 BY deltat TO t2

In this case the displays will be refreshed at times specified by the
timeset values.

Any number of plot commands can follow a display-time declaration, and
the specification will apply to all of them. It is not necessary to give a
display-time specification for each plot.

 109

Multiple display time declaration statements can be used. When multiple
display time statements are used each applies to all subsequent display
commands until a new time declaration is encountered or the
MONITORS or PLOTS section ends.

Examples:

See the problem "Samples | Time_Dependent | Heatflow |
Float_Zone.pde", or any of the other problems in the
"Samples|Time_Dependent" folder.

4.15.8. Hardcopy

A right-click on any plot window, whether tiled or maximized, will bring up
a menu from which the plot may be printed or exported (or rotated, if this
is meaningful for the plot).

Text listings of plotted values can be written to disk by the plot modifier
EXPORT (aka PRINT) in the descriptor.

4.15.9. Graphics Export

Bitmaps

A right-click in any displayed plot window brings up a menu, one item
of which is "Export". Clicking this item brings up a dialog for exporting
bitmap forms of the displayed plot. Current options are BMP, PNG,
PPM and XPM. See the "Getting Started" section for more
information.
All these formats can also be selected automatically as graphic display
modifiers.

Retained Graphics

All displays in the PLOTS section are written in compressed form to a
disk file with the extension ".PG5".
These files may be redisplayed at a later time by use of the "View"
menu item in the "File" menu. On some systems, this may be
accomplished simply by double-clicking the ".PG5" file in the system
file manager.
See the "Getting Started" section for more information.

Screen Grabs

 110

Any display may also be pasted into other windows programs by using
a screen capture facility such as that provided with PaintShopPro by
JASC (www.jasc.com).

Export Files

The plot types CDF, TABLE, TECPLOT and VTK can be used to
export data to other applications for external processing. TRANSFER
can be used to transfer data to another FlexPDE run for
postprocessing.
See Graphics Display and Data Export or Technical Notes for more
information.

Examples

See the following sample problems for examples of exporting plot
data:
Samples|Misc|Printest.pde
Samples|Misc|Import-Export|Export.pde
Samples|Misc|Import-Export|Export_Format.pde
Samples|Misc|Import-Export|Export_History.pde

4.15.10. Examples

See the sample problem Samples | Misc | Plottest.pde for examples of
PLOTS and MONITORS.
See the sample problem Samples | Misc | Printest.pde for examples of
exporting plot data.
See the sample problem Samples | Misc | Import-Export | Export.pde for
examples of exports without display.

4.16. Histories

The HISTORIES section, which is optional, specifies values for which a
time history is desired. While multiple HISTORY statements can be
listed they must all be of the form:

HISTORY (arg1 [,arg2,...])
HISTORY (arg1 [,arg2,...]) AT (X1,Y1) [(X2,Y2)...]

 111

The coordinates specify locations in the problem at which the history is to
be recorded. If no coordinate is given, the arg must evaluate to a scalar.

The modifiers and reports available to PLOTS and MONITORS may also
be applied to HISTORY statements.

The display of HISTORIES is controlled by the AUTOHIST select
switch, which defaults to ON. With the default setting all HISTORIES are
automatically refreshed and displayed with the update of any
MONITORS or PLOTS.

If desired, HISTORY statements can be included directly in the
MONITORS section or PLOTS section.

Histories in Staged Problems

HISTORY statements may be used in STAGED problems as well as in
time-dependent problems.
In this case, the default abscissa will be stage number. You can select
a different value for the abcissa quantity by appending the clause

VERSUS expression

In this case, the values of the given expression in the various stages
will be used as the plot axis.

4.17. End

All problem descriptors must have an END section.

With the exception of a numeric enabling key used in special
demonstration files prepared by PDE Solutions Inc., anything appearing
after the reserved word end is ignored by FlexPDE and treated as a
comment.

Problem notes can be conveniently placed after the reserved word END.

 112

5. Batch Processing

A special form of descriptor is used to specify a group of problems to be
run in batch mode.

A single "section" introduced by the word BATCH identifies a descriptor
as a batch control file. Following this header, a sequence of names
appears, each name enclosed in quote marks. Commas may optionally
be used to separate the names. Any number of names may appear on
each line of the descriptor. Each name is the name of a problem
descriptor to be run. Names may include directory paths, which are
assumed to originate in the directory containing the batch descriptor.
The ".pde" extension is not required, and will be assumed if omitted. The
list should be closed with an END statement.

For example,

BATCH
{ use the correct separators for your operating system }

 "misc\table", "steady_state\heat_flow\slider"
 "steady_state\stress\3d_bimetal"

END

The entire problem list is examined immediately, and any syntax errors in
the names are reported. All files named in the list are located, and
missing files are reported before any processing begins.

Each problem named in the list is run to completion in sequence. As the
problems run, status information is written to a log file in the directory
containing the batch descriptor. This file has the same name as the
batch descriptor, with the extension '.log', and all problems in the list are
summarized in this single file. Graphical output from each problem is
written as usual to a unique .PG4 file in the directory with the specific
descriptor. After the run is completed, this graphic output may be
reviewed by restarting FlexPDE and using the VIEW menu item.

Simple names may be listed without the quotes, but in this case
embedded spaces, path separators, reserved words and numeric initials
will all cause error diagnostics.

 113

6. Running FlexPDE from the
Command Line

When FlexPDE is run from a command line or as a subtask from another
application, there are some command-line switches that can be used to
control its behavior:

-R Run the file which is named on the command line.

Do not enter edit mode.
-V View the file which is named on the command line.

Do not enter edit mode.
-X Exit FlexPDE when the problem completes.
-M Run in "minimized" mode (reduced to an icon).
-Q Run "quietly". Combines -R -X -M.
-S Run "silently". -Q with all error reports suppressed.

 114

Index

.
"Include" Files...........................6
.PDE...4
.PGX.................................... 109
3D coordinates47
3D PLOTS..............................94
ABS function...........................15
Accuracy threshold.................49
ALE...68
alias ..47
ALIAS44
Analytic Functions15
ANTIPERIODIC Boundary

Conditions...........................88
ARC..72
ARCCOS function15
ARCSIN function15
ARCTAN function...................15
AREA_INTEGRAL29
AREA_INTEGRATE...............97
Arithmetic Operators23
ARRAY definitions..................53
AS 'string'97
ASPECT.................................38
AT.. 111
ATAN2 function15
AUTOHIST 44, 111
AUTOSTAGE39
batch runs............................ 113
Bessel Function......................15
BESSJ function15
BESSY function......................15
Bevels.....................................82
BINTEGRAL...........................28
Bitmaps 109
BLACK............................. 44, 97
BMP............................... 97, 109
BOUNDARIES........................71
Boundary Conditions..............82

1D85

3D.......................................86
ANTIPERIODIC..................88
PERIODIC88
Point Load84
Point Value84
syntax84

Boundary Paths and Path
Names72

cartesian.................................47
cartesian3...............................47
Case Sensitivity6
CDF output.............................94
CDFGRID...............................44
CENTER72
CHANGELIM..........................39
Command-line Switches114
Commas.................................12
Comments..............................10
components

vector..................................25
conditional expressions..........33
Constants14
Constraints69
CONTACT Boundary Conditions

......................................82, 87
CONTOUR plot94
CONTOURGRID....................44
CONTOURS...........................44
coordinate47
coordinates.............................47
COS function..........................15
COSH function15
CROSS product25
CUBIC....................................39
CURL Operator26
CURVEGRID..........................38
CYCLE plot interval..............108
cylindrical47
Decimal Numbers14

 115

DEFINTIONS..........................52
DEL2 - Laplacian Operator26
dependent variables...............49
Derivative operators26
Derivatives

high order............................66
Descriptor format......................5
Differential operators..............66
Differential Operators26
differentiation

suppressing63
Dirichlet Boundary Conditions82
Display Modifiers....................97
Display Specifications94
DIV - Divergence Operator.....26
DOTproduct............................25
eigenvalue..............................32
Eigenvalue..............................67
ELEVATION plot94
ELEVATIONGRID44
EMF..97
Empty Layers in 3D................79
END..................................... 111
ENDREPEAT34
Engineering Notation..............14
EPS ..97
Equations66
Equations and Variables67
EQUATIONS section..............66
ERF function...........................15
ERFC function........................15
ERRLIM..................................39
Error Function.........................15
Eulerian68
EVAL function23
examples

graphics 110
Excludes.................................80
EXP function...........................15
Exponential Integral - EXPINT

..15
EXPORT.................................97
Exporting graphics 109

expressions............................33
EXTRUSION Section70
FEATUREPLOT.....................44
Features80
File extension...........................4
File name4
FILE 'string'97
Fillets......................................82
FINDERBINS44
FINISH72
FIRSTPARTS.........................39
FIT Function...........................18
FIXDT.....................................39
FIXED POINT90
FIXED RANGE.......................97
Flux Boundary Conditions......82
FONT44
Format......................................5
FORMAT 'string'.....................97
FRONT...................................90
Function definition..................54
Functions

non-analytic15
fuzzy IF...................................22
GAMMA function....................15
GLOBAL VARIABLES............51
GLOBALMAX function15
GLOBALMAX_X function.......15
GLOBALMAX_Y function.......15
GLOBALMAX_Z function15
GLOBALMIN function15
GLOBALMIN_X function15
GLOBALMIN_Y function15
GLOBALMIN_Z function15
GRAD - Gradient Operator26
Graphic Display modifiers97
Graphics Examples..............110
graphics export109
GRAY...............................44, 97
grid control features80
GRID plot94
GRIDARC...............................38
GRIDLIMIT.............................38

 116

HALT92
Hardcopy............................. 109
HARDMONITOR44
histories 111
Histories in Staged Problems

... 111
history.................................. 111
HYSTERESIS.........................39
ICCG39
include files...............................6
INITGRIDLIMIT38
Initial values............................65
input..3
INTEGRAL 29, 30
Integral Constraints69
Integral Operators28
Integrals

area.....................................29
line28
surface......................... 30, 31
time28
volume 29, 30

INTEGRATE...........................97
INTSTRING............................17
ITERATE39
JUMP Boundary Conditions ...87
Lagrange68
LAMBDA.................................32
LAYER

Extrusion.............................70
LIMITED REGIONS78
LINE72
LINE_INTEGRAL28
LINE_INTEGRATE.................97
linear basis51
LINUPDATE39
Literal Strings13
LN function15
LOAD Boundary Conditions ...82
LOG..97
LOG10 function15
logarithm.................................15
LOGLIMIT...............................44

LUMP function19
MAGNITUDE of vector...........25
Material parameters75
MAX function..........................15
MERGE............................44, 97
MESH.....................................97
Mesh control features80
Mesh Control Parameters64
Mesh Generation Controls38
Mesh Refinement - FRONT ...90
Mesh Refinement - RESOLVE

..91
MESH_DENSITY64
MESH_SPACING64
Metafile...................................97
MIN function...........................15
MOD function15
Modal Analysis.......................67
MODES..................................39
MONITORS............................93
Monitors in Steady State

Problems108
MOVE.....................................50
Moving Meshes................50, 68
NATURAL Boundary Conditions

..82
NEWTON39
NGRID....................................38
NOBC Boundary Conditions ..82
NODELIMIT............................38
NOMINMAX44
Non-Analytic Functions15
NONLINEAR39
NONSYSMMETRIC39
NORM97
NORMAL component.............25
NOTAGS................................44
NOTIFY_DONE39
NOTIPS............................44, 97
NRMATRIX39
NRMINSTEP..........................39
NRSLOPE..............................39
NRUPDATE39

 117

NRUPFIT................................39
Numbering and Naming

Regions...............................81
Numeric Range14
Numeric Reports 107
Numerical Constants..............14
ON "name" 104
ON <equation>.................... 104
ON equation94
ON LAYER "name".............. 104
ON LAYER number............. 104
ON REGION "name" 104
ON REGION number 104
ON SURFACE........................94
ON SURFACE "name" 104
ON SURFACE number 104
Operators

Arithmetic............................23
Differential...........................26
Integral................................28
Relational............................24
String24
Vector25

ORDER39
Ordering Regions81
OVERSHOOT39
PAINTED......................... 44, 97
PAINTGRID............................44
PAINTMATERIALS44
PAINTREGIONS44
Parameterized Definitions54
Parameters

redefining............................52
regional75

PASSIVE Modifier63
Paths and Path Names72
PERIODIC Boundary Conditions

..88
PI 32
Plot Domain......................... 104
Plot Modifiers..........................97
plot POINTS97
plot range97

Plot time selection................108
PLOTINTEGRATE44
PLOTS93
PNG97, 109
POINT72
POINT definitions...................56
POINT LOAD Boundary

Conditions...........................84
POINT VALUE Boundary

Conditions...........................84
PostScript...............................97
PPM97, 109
PRECONDITION39
PREFER_SPEED39
PREFER_STABILITY39
Preparing a Descriptor File3
PRINT97
PRINTMERGE44
problem description..................3
Problem Descriptor Structure...4
pulse function.........................17
QUADRATIC..........................39
quoted strings13
R 32
radius32
RADIUS..................................72
ramp function17
RAMP function19
RANDOM function15
Regional Parameter Values...75
Regions74

excluded80
Numbering and naming......81
Ordering..............................81
overlaying74

REGRID38
REINITIALIZE39
Relational Operators24
REPEAT.................................34
Repeated Text34
REPORT107
Reporting numbers107

 118

Reserved Words and Symbols
..11

Resolve91
SAVE function20
SCALAR VARIABLES............51
script...3
section names4
SELECT37
Semicolons.............................12
SENSITIVITY39
Separators..............................12
SIGN function.........................15
SIMPLEX................................51
SIN function............................15
SINH function15
SINTEGRAL.................... 30, 31
SMOOTHINIT.........................38
Spaces12
SPLINE...................................72
SPLINETABLE function58
SQRT function........................15
STAGE32
STAGED Definitions...............55
STAGED Geometry................55
STAGEGRID38
STAGES.................................39
STAGES Selector55
START....................................72
step function...........................17
String Functions17
String Operators.....................24
Strings13
SUBSPACE............................39
SUM function..........................21
SUMMARY.............................94
SUMMARY plot94
SURF_INTEGRAL 30, 31
SURFACE

Extrusion.............................70
SURFACE plot94
SURFACEGRID44
SWAGE function22
Switches

Command-line114
TABLE....................................94
TABLE File format..................59
TABLE Input function57
TABLE output.........................94
Tabledef Input58
TAN function15
TANGENTIAL component......25
TANH function........................15
TECPLOT...............................94
TECPLOT putput94
TERRLIM39
Text Strings............................13
TEXTSIZE..............................44
THERMAL_COLORS.............44
THETA32
THRESHOLD.........................49
Time92
time range92
TIME_INTEGRAL28
TINTEGRAL...........................28
Title ..37
TNORM..................................39
TRANSFER............................94
TRANSFER File format..........61
TRANSFER input...................60
TRANSFER output.................94
TRANSFERMESH94
TRANSFERMESH input61
trigonometric functions...........15
Unit Functions17
UPFACTOR39
UPULSE function17
UPWIND.................................39
URAMP function17
USTEP function17
VAL function...........................23
VALUE Boundary Conditions.82
Values

Initial65
VANDENBERG......................39
variables.................................49
Variables and Equations67

 119

VECTOR94
VECTOR composition25
Vector Operators....................25
VECTOR plot..........................94
VECTORGRID44
VELOCITY Boundary

Conditions...........................82
VERSUS.............................. 111
VIEWPOINT44
VOID.......................................79
VOL_INTEGRAL 29, 30
VOL_INTEGRATE97

VTK ..94
VTKLIN...................................94
white space12
Window Tiling.......................108
XCOMP function25
xcylinder47
XERRLIM39
XPM97, 109
YCOMP function25
ycylinder47
ZCOMP function25
ZOOM97

