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1. Foreword 
 
This document attempts to introduce the reader gradually to the use of 
FlexPDE in the solution of systems of partial differential equations. 
 
We begin with a discussion of the basic character of FlexPDE.  We then 
construct a simple model problem and proceed to add features to the 
model. 
 
The result is a description of the most common features of FlexPDE in 
what we hope is a meaningful and understandable evolution that will 
allow users to very quickly become accustomed to the use of FlexPDE 
and to use it in their own work. 
 
No attempt is made in this manual to present a complete description of 
each command or circumstance which can arise.  Detailed descriptions 
of each command are presented in the companion volume, the FlexPDE 
Problem Descriptor Reference. 
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2. Overview 
 
2.1. What Is FlexPDE? 
 
FlexPDE is a "scripted finite element model builder and numerical 
solver".   
By this we mean that from a script written by the user, FlexPDE performs 
the operations necessary to turn a description of a partial differential 
equations system into a finite element model, solve the system, and 
present graphical and tabular output of the results. 
 
FlexPDE is also a "problem solving environment".  
It performs the entire range of functions necessary to solve partial 
differential equation systems: an editor for preparing scripts, a mesh 
generator for building finite element meshes, a finite element solver to 
find solutions, and a graphics system to plot results.  The user can edit 
the script, run the problem and observe the output, then re-edit and re-
run repeatedly without leaving the FlexPDE application environment. 
 
FlexPDE has no pre-defined problem domain or equation list.   
The choice of partial differential equations is totally up to the user. 
 
The FlexPDE scripting language is a "natural" language. 
It allows the user to describe the mathematics of his partial differential 
equations system and the geometry of his problem domain in a format 
similar to the way he might describe it to a co-worker. 
 
For instance, there is an EQUATIONS section in the script, in which 
Laplace's equation would be presented as 

 
Div(grad(u)) = 0. 

 
Similarly, there is a BOUNDARIES section in the script, where the 
geometric boundaries of a two-dimensional problem domain are 
presented merely by walking around the perimeter: 
 

Start(x1,y1) line to (x2,y1) to (x2,y2) to (x1,y2) to CLOSE 
 
This scripted form has many advantages 
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• The script completely describes the equation system and problem 
domain, so there is no uncertainty about what equations are being 
solved, as might be the case with a fixed-application program. 

• New variables, new equations or new terms may be added at will, so 
there is never a case of the software being unable to represent a 
different loss term, or a different physical effect. 

• Many different problems can be solved with the same software, so 
there is not a new learning curve for each problem 

 
There is also a corollary effect with the scripted model: 
• The user must be able to pose his problem in mathematical form.   
 

In an educational environment, this is good.  It's what the student 
wants to learn.   
 
In an industrial environment, a single knowledgeable user can 
prepare scripts which can be used and modified by less skilled 
workers.  And a library of application scripts can show how it is 
done. 
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2.2. What Can FlexPDE Do? 
 
• FlexPDE can solve systems of first or second order partial differential 

equations in one, two or three-dimensional Cartesian geometry, or in 
axi-symmetric two-dimensional geometry.  (Other geometries can be 
supported by including the proper forms of PDE.) 

 
• The system may be steady-state or time-dependent, or alternatively 

FlexPDE can solve eigenvalue problems.  Steady-state and time-
dependent equations can be mixed in a single problem. 

 
• Any number of simultaneous equations can be solved, subject to the 

limitations of the computer on which FlexPDE is run. 
 
• The equations can be linear or nonlinear.  (FlexPDE automatically 

applies a modified Newton-Raphson iteration process in nonlinear 
systems.) 

 
• Any number of regions of different material properties may be defined.   
 
• Modeled variables are assumed to be continuous across material 

interfaces.  Jump conditions on derivatives follow from the statement 
of the PDE system. (CONTACT boundary conditions can handle 
discontinuous variables.) 

 
• FlexPDE can be extremely easy to use, and this feature recommends 

it for use in education. But FlexPDE is not a toy.  By full use of its 
power, it can be applied successfully to extremely difficult problems. 
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2.3. How Does It Do It? 
 
FlexPDE is a fully integrated PDE solver, combining several modules to 
provide a complete problem solving system: 

 
• A script editing module with syntax highlighting provides a full text 

editing facility and a graphical domain preview. 
 
• A symbolic equation analyzer expands defined parameters and 

relations, performs spatial differentiation, and symbolically applies 
integration by parts to reduce second order terms to create symbolic 
Galerkin equations.  It then symbolically differentiates these equations 
to form the Jacobian coupling matrix. 

 
• A mesh generation module constructs a triangular or tetrahedral 

finite element mesh over a two or three-dimensional problem domain. 
In two dimensions, an arbitrary domain is filled with an unstructured 
triangular mesh.  In three-dimensional problems, an arbitrary two-
dimensional domain is extruded into a the third dimension and cut by 
arbitrary dividing surfaces.  The resulting three-dimensional figure is 
filled with an unstructured tetrahedral mesh. 

 
• A Finite Element numerical analysis module selects an appropriate 

solution scheme for steady-state, time-dependent or eigenvalue 
problems, with separate procedures for linear and nonlinear systems.  
The finite element basis may be either quadratic or cubic. 

 
• An adaptive mesh refinement procedure measures the adequacy of 

the mesh and refines the mesh wherever the error is large.  The 
system iterates the mesh refinement and solution until a user-defined 
error tolerance is achieved. 

 
• A dynamic timestep control procedure measures the curvature of 

the solution in time and adapts the time integration step to maintain 
accuracy.  

 
• A graphical output module accepts arbitrary algebraic functions of 

the solution and plots contour, surface, vector or elevation plots. 
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• A data export module can write text reports in many formats, 
including simple tables, full finite element mesh data, CDF or TecPlot 
compatible files.  
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2.4. Who Can Use FlexPDE? 
 
Most of physics and engineering is described at one level or another in 
terms of partial differential equations.  This means that a scripted solver 
like FlexPDE can be applied to virtually any area of engineering or 
science. 
 
• Researchers in many fields can use FlexPDE to model their 

experiments or apparatus, make predictions or test the importance of 
various effects. Parameter variations or dependencies are not limited 
by a library of forms, but can be programmed at will.  

 
• Engineers can use FlexPDE to do design optimization studies, 

feasibility studies and conceptual analyses.  The same software can 
be used to model all aspects of a design -- no need for a separate tool 
for each effect. 

 
• Application developers can use FlexPDE as the core of a special-

purpose applications that need finite element modeling of partial 
differential equation systems.  

 
• Educators can use FlexPDE to teach physics or engineering.  A 

single software tool can be used to examine the full range of systems 
of interest in a discipline.   

 
• Students see the actual equations, and can experiment interactively 

with the effects of modifying terms or domains.  
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2.5. What Does A Script Look Like? 
 
A problem description script is a readable text file.  The contents of the 
file consist of a number of sections, each identified by a header.  The 
fundamental sections are: 
 
• TITLE – a descriptive label for the output. 
• SELECT – user controls over the default behavior of 

FlexPDE. 
• VARIABLES – here the dependent variables are named. 
• DEFINITIONS – useful parameters, relationships or functions 

are defined. 
• EQUATIONS – each variable is associated with a partial 

differential equation. 
• BOUNDARIES – the geometry is described by walking the 

perimeter of the domain, stringing together line or 
arc segments to bound the figure. 
 

• MONITORS and 
PLOTS 

– desired graphical output is listed, including any 
combination of CONTOUR, SURFACE, 
ELEVATION or VECTOR plots. 

• END – completes the script. 
 

[Note: There are several other optional sections for describing special 
aspects of the problem. Some of these will be introduced later in this 
document.  Detailed rules for all sections are presented in the 
FlexPDE Problem Descriptor Reference chapter "Sections".] 

 
Comments can be placed anywhere in a script. 
• { Anything inside curly brackets is a comment. } 
• ! from an exclamation to the end of the line is a comment. 
 
 
A simple diffusion equation on a square might look like this: 
 

TITLE  'Simple diffusion equation' 
{ this problem lacks sources and boundary conditions } 
VARIABLES  

u 
DEFINITIONS  
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k=3 { conductivity } 
EQUATIONS  
 div(k*grad(u)) =0 
BOUNDARIES 

REGION 1 
START(0,0)  
LINE TO (1,0)  

TO (1,1)  
TO (0,1)  
TO CLOSE 

PLOTS 
CONTOUR(u) 
VECTOR(k*grad(u)) 

END 
 
Later on, we will show detailed examples of the development of a 
problem script. 
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2.6. What About Boundary Conditions? 
 
Proper specification of boundary conditions is crucial to the solution of a 
PDE system. 
 
In a FlexPDE script, boundary conditions are presented as the boundary 
is being described. 
 
The primary types of boundary condition are VALUE and NATURAL. 
 
The VALUE (or Dirichlet) boundary condition specifies the value that a 
variable must take on at the boundary of the domain. 
 
The NATURAL boundary condition specifies a flux at the boundary of 
the domain.  (The precise meaning of the NATURAL boundary condition 
depends on the PDE for which the boundary condition is being specified.  
Details are discussed in the Chapter "Natural Boundary Conditions") 
 
In the diffusion problem presented above, for example, we may add fixed 
values on the bottom and top edges, and zero-flux conditions on the 
sides as follows: 
 

… 
BOUNDARIES 

REGION 1 
START(0,0)  
VALUE(u) = 0  LINE TO (1,0)  { fixed value on bottom } 
NATURAL(u)=0 LINE TO (1,1)  { insulated right side } 
VALUE(u)=1 LINE TO (0,1)  { fixed value on top } 
NATURAL(u)=0 LINE TO CLOSE { insulated left side } 

… 
 
Notice that a VALUE or NATURAL statement declares a condition which 
will apply to the subsequent boundary segments until the declaration is 
changed. 
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3. Basic Usage 
 
3.1. How Do I Set Up My Problem? 
 
FlexPDE reads a text script that describes in readable language the 
characteristics of the problem to be solved.  In simple applications, the 
script can be very simple.  Complex applications may require much more 
familiarity with the abilities of FlexPDE.   
 
In the following discussion, we will begin with the simpler features of 
FlexPDE and gradually introduce more complex features as we proceed. 
 
FlexPDE has a built-in editor with which you can construct your problem 
script.  You can edit the script, run it, edit it some more, and run it again 
until the result satisfies your needs.  You can save the script for later use 
or as a base for later modifications. 
 
The easiest way to begin a problem setup is to copy a similar problem 
that already exists. 
 
Whether you start fresh or copy an existing file, there are four basic parts 
to be defined: 
 

• Define the variables and equations 
• Define the domain 
• Define the material parameters 
• Define the boundary conditions 
• Specify the graphical output. 

 
These steps will be described in the following sections.  We will use a 
simple 2D heatflow problem as an example, and start by building the 
script from the most basic elements of FlexPDE.  In later sections, we will 
elaborate the script, and address the more advanced capabilities of 
FlexPDE in an evolutionary manner.  3D applications rely heavily on 2D 
concepts, and will be discussed in a separate chapter.   

 
[Note: We will make no attempt in the following to describe all the 
options that are available to the user at any point, but try to keep the 
concept clear by illustrating the most common forms.  The full range of 
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options is detailed in the FlexPDE Reference.  Many will also be 
addressed in subsequent topics.] 
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3.2. Problem Setup Guidelines 
 
In posing any problem for FlexPDE, there are some guidelines that 
should be followed. 
 
• Start with a fundamental statement of the physical system.  

Descriptions of basic conservation principles usually work better than 
the heavily massaged pseudo-analytic "simplifications" which 
frequently appear in textbooks.   

 
• Start with a simple model, preferably one for which you know the 

answer.  This allows you both to validate your presentation of the 
problem, and to increase your confidence in the reliability of FlexPDE.  
(One useful technique is to assume an analytic answer and plug it into 
the PDE to generate the source terms necessary to produce that 
solution.  Be sure to take into account the appropriate boundary 
conditions.) 

 
• Use simple material parameters at first. Don't worry about the exact 

form of nonlinear coefficients or material properties at first.  Try to get 
a simple problem to work, and add the complexities later. 

 
• Map out the domain.  Draw the outer boundary first, placing boundary 

conditions as you go.  Then overlay the other material regions.  Later 
regions will overlay and replace anything under them, so you don't 
have to replicate a lot of complicated interfaces. 

 
• Use MONITORS of anything that might help you see what is 

happening in the solution.  Don't just plot the final value you want to 
see and then wonder why it's wrong.  Get feedback!  That's what the 
MONITORS section is there for. 

 
• Annotate your script with frequent comments. Later you will want to 

know just what it was you were thinking when you wrote the script.  
Include references to sources of the equations or notes on the 
derivation. 

 
• Save your work.  FlexPDE will write the script to disk whenever you 

click "Domain Review" or "Run Script".  But if you are doing a lot of 
typing, use "Save" or "Save_as" to protect your work from unforseen 
interruptions. 
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3.3. Notation 
 
In most cases, FlexPDE notation is simple text as in a programming 
language.  
 

• Differentiation, such as du/dx, is denoted by the form dx(u). All active 
coordinate names are recognized, as are second derivatives like 
dxx(u) and differential operators Div, Grad and Curl.  

• Names are NOT case sensitive.  "F" is the same as "f". 
• Comments can be placed liberally in the text.  Use { } to enclose 

comments or ! to ignore the remainder of the line. 
 
[Note: See the Problem Descriptor Reference chapter on Elements for 
a full description of  FlexPDE notation.] 
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3.4. Variables and Equations 
 
The two primary things that FlexPDE needs to know are:   
 
• what are the variables that you want to analyze? 
• what are the partial differential equations that define them? 
 
The VARIABLES and EQUATIONS sections of a problem script supply 
this information.  The two are closely linked, since you must have one 
equation for each variable in a properly posed system. 
 
In a simple problem, you may have only a single variable, like voltage or 
temperature.  In this case, you can simply state the variable and 
equation: 
 

VARIABLES 
Phi 

EQUATIONS 
Div(grad(Phi)) = 0 

 
In a more complex case, there may be many variables and many 
equations.  FlexPDE will want to know how to associate equations with 
variables, because some of the details of constructing the model will 
depend on this association. 
 
Each equation must be labelled with the variable to which it is associated 
(name and colon), as indicated below: 

 
VARIABLES 

A,B 
EQUATIONS 

A: Div(grad(A)) = 0 
B: Div(grad(B)) = 0 

 
Later, when we specify boundary conditions, these labels will be used to 
associate boundary conditions with the appropriate equation. 
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3.5. Mapping the Domain 
 
Two-Dimensional Domain Description 
 
A two-dimensional problem domain is described in the BOUNDARIES 
section, and is made up of REGIONS, each assumed to contain unique 
material properties.  A REGION may contain many closed loops or 
islands, but they are all assumed to have the same material properties.   
 
• A REGION specification begins with the statement REGION <number>  

(or REGION "name") and all loops following the header are included in 
the region. 

 
• REGIONs occurring later in the script overlay and cover up parts of 

earlier REGIONs. 
 
• The first REGION should contain the entire domain.  This is an 

unenforced convention that makes the attachment of boundary 
conditions easier.  

 
Region shapes are described by walking the perimeter, stepping from 
one joint to another with LINE, SPLINE  or ARC segments.  Each 
segment assumes that it will continue from the end of the previous 
segment, and the START clause gets things rolling.  You can make a 
segment return to the beginning with the word CLOSE (or TO CLOSE). 
 
• A rectangular region, for example, is made up of four line segments: 

  
  

START(x1,y1)  
LINE TO(x2,y1)  

TO (x2,y2)  
TO (x1,y2)  
TO CLOSE 
  

(Of course, any quadrilateral figure can be made with the same 
structure, merely by changing the coordinates.  And any polygonal 
figure can be constructed by adding more points.) 

 
• Arcs can be built in several ways, the simplest of which is by 

specifying a center and an angle: 

 

 
 

18

   
START(r,0)  
ARC(CENTER=0,0) ANGLE=360  
 

• Arcs can also be built by specifying a center and an end point: 
   
START(r,0)  
ARC(CENTER=0,0) TO (0,r)  { a 90 degree arc } 
  
An elliptical arc will be built if the distance from the center to the 
endpoint is different than the distance from the center to the 
beginning point.  The axes of the ellipse will extend along the 
horizontal and vertical coordinate axes; you cannot build a tilted 
ellipse.  

 
• Loops can be named for use in later references, as in:   
  
 START "Name" (…) 
 
 
The prototype form of The BOUNDARIES section is then: 

 
BOUNDARIES 

REGION 1 
<closed loops around the domain>  

REGION 2 
<closed loops around overlays of the second material>  

… 
 
You can build your domain a little at a time, using the "domain" menu 
button to preview a drawing of what you have created so far. 

 
The "Save" and "Save_As" menu buttons allow you to frequently save 
your work, just in case. 
 
 



 

 
 

19

 

3.6. An Example Problem 
 
Let us build as an example a circular inclusion between two plates.  We 
will simply treat the plates as the top and bottom surfaces of a square 
enclosure, with the circle centered between them.  Using the statements 
above and adding the required control labels, we get: 

 
BOUNDARIES 

REGION 1  'box' { the bounding box } 
START(-1,-1)  
LINE TO(1,-1)  

TO (1,1)  
TO (-1,1)  
TO CLOSE 

REGION 2  'blob' { the embedded circular 'blob' } 
START 'ring' (1/2,0)  

ARC(CENTER=0,0) ANGLE=360 TO CLOSE 
 
 
The resulting figure displayed by the "domain" button is this: 

 
 
 

  

 
[Note: The detailed Rules for constructing domain boundaries is 
included in the Reference chapter "Sections | Boundaries".] 
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3.7. Generating A Mesh 
 
When you select "Run Script" from the Controls menu (or the  button), 
FlexPDE will begin execution by automatically creating a finite element 
mesh to fit the domain you have described.  In the automatic mesh, cell 
sizes will be determined by the spacing between explicit points in the 
domain boundary, by the curvature of arcs, or by explicit user density 
controls. 
 
In our example, the automatic mesh looks like this: 

 
 
 

Notice that the circular boundary of region 2 is mapped onto cell legs. 
 
There are several controls that the user can apply to change the 
behavior of the automatic mesh.  These are described in detail in the 
chapter "Controlling Mesh Density" below. 
 
As an example, we can cause the circular boundary of region 2 to be 
gridded more densely by using the modifier MESH_SPACING: 

 
REGION 2 'blob'  { the embedded 'blob' } 

START(1/2,0)  
MESH_SPACING = 0.05 
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ARC(CENTER=0,0) ANGLE=360 
 

The resulting mesh looks like this: 
 

 
 

In most cases, it is not necessary to intervene in the mesh generation, 
because as we will see later, FlexPDE will adaptively refine the mesh 
wherever it detects that there are strong curvatures in the solution. 
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3.8. Defining Material Parameters 
 
Much of the complexity of real problems comes in the fact that the 
coefficients that enter into the partial differential equation system take on 
different values in the various materials of which a structure is 
composed. 
 
This is handled in FlexPDE by two facilities.  First, the material 
parameters are given names and default values in the DEFINITIONS 
section.  Second, the material parameters are given regional values 
within the domain REGIONS. 
 
So far, it has been of little consequence whether our test problem was 
heat flow or electrostatics or something else entirely.  However, for 
concreteness in what follows, let us assume it is a heat equation, 
describing an insulator imbedded in a conductor between to heat 
reservoirs.  We will give the circular insulator a conductivity of 0.001 and 
the surrounding conductor a conductivity of 1. 
 
First, we define the name of the constant and give it a default value in 
the definitions section: 
 

DEFINITIONS 
k = 1 

 
This default value will be used as the value of "k" in every REGION of the 
problem, unless specifically redefined in each region. 
 
Now we introduce the constant into the equation: 
 

EQUATIONS 
Div(-k*grad(phi)) = 0 

 
Then we specify the regional value in region 2: 
  

... 
REGION 2 'blob' { the embedded blob } 

k = 0.001 
START(1/2,0)  
ARC(CENTER=0,0) ANGLE=360 
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We could also define the parameter k=1 for the conductor in REGION 1, 

if it seemed useful for clarity. 
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3.9. Setting the Boundary Conditions 
 
Boundary conditions are specified as modifiers during the walk of the 
perimeter of the domain. 
 
The primary types of boundary condition are VALUE and NATURAL. 
 
The VALUE (or Dirichlet) boundary condition specifies the value that a 
variable must take on at the boundary of the domain.  Values may be 
any legal arithmetic expression, including nonlinear dependences on 
variables. 
 
The NATURAL boundary condition specifies a flux at the boundary of 
the domain.  Definitions may be any legal arithmetic expression, 
including nonlinear dependence on variables.  With Laplace's equation, 
the NATURAL boundary condition is equivalent to the Neumann or 
normal derivative boundary condition. 

 
[Note: The precise meaning of the NATURAL boundary condition 
depends on the PDE for which the boundary condition is being 
specified.  Details are discussed in the Chapter "Natural Boundary 
Conditions." ] 

 
Each boundary condition statement takes as an argument the name of a 
variable.  This name associates the boundary condition with one of the 
listed equations, for it is in reality the equation that is modified by the 
boundary condition.  The equation modified by VALUE(u)=0, for 
example, is the equation which has previously been determined to define 
u.  NATURAL(u)=0 will depend for its meaning on the form of the 
equation which defines u. 
 
In our sample problem, suppose we wish to define a zero temperature 
along the bottom edge, an insulating boundary on the right side, a 
temperature of 1 on the top edge, and an insulating boundary on the left.  
We can do this with these commands: 

… 
REGION 1 'box' { the bounding box } 

START(-1,-1)  
{ Phi=0 on base line: } 
VALUE(Phi)=0 LINE TO(1,-1)  
{ normal derivative =0 on right side: } 
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NATURAL(Phi)=0 LINE TO (1,1)  
{ Phi = 1 on top: } 
VALUE(Phi)=1 LINE TO (-1,1)  
{ normal derivative =0 on left side: } 
NATURAL(Phi)=0 LINE TO CLOSE 

 
 
Notice that a VALUE or NATURAL statement declares a condition which 
will apply to the subsequent boundary segments until the declaration is 
changed. 
 
Notice also that the segment shape (Line or Arc) must be restated after a 
change of boundary condition. 

 
[Note: Other boundary condition forms are allowed.  See the 
Reference chapter "Sections | Boundaries".] 
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3.10. Requesting Graphical Output 
 
The MONITORS and PLOTS sections contain requests for graphical 
output.   
 
MONITORS are used to get ongoing information about the progress of 
the solution.   
 
PLOTS are used to specify final output, and these graphics will be saved 
in a disk file for later viewing. 
 
FlexPDE recognizes several forms of output commands, but the primary 
forms are: 
 
• CONTOUR a plot of contours of the argument; it may be color-filled 
• SURFACE a 3D surface of the argument 
• VECTOR a field of arrows 
• ELEVATION a "lineout" along a defined path 
• SUMMARY text-only reports 
 
Any number of plots may be requested, and the values plotted may be 
any consistent algebraic combination of variables, coordinates and 
defined parameters. 
 
In our example, we will request a contour of the temperature, a vector 
map of the heat flux, k*grad(Phi), an elevation of temperature along the 
center line, and an elevation of the normal heat flux on the surface of the 
blob: 
 

PLOTS 
CONTOUR(Phi) 
VECTOR(-k*grad(Phi)) 
ELEVATION(Phi) FROM (0,-1) to (0,1) 
ELEVATION(Normal(-k*grad(Phi))) ON 'ring' 

 
Output requested in the PLOTS section is produced when FlexPDE has 
finished the process of solving and regridding, and is satisfied that all 
cells are within tolerance.  An alternative section, identical in form to the 
PLOTS section but named MONITORS, will produce transitory output at 
more frequent intervals, as an ongoing report of the progress of the 
solution. 
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A record of all PLOTS is written in a file with suffix .PG5 and the name of 
the .PDE script file.  These recorded plots may be viewed at a later time 
by invoking the VIEW item in the FlexPDE main menu.   
 
MONITORS are not recorded in the .PG5 file.  It is strongly 
recommended that MONITORS be used liberally during script 
development to determine that the problem has been properly set up and 
that the solution is proceeding as expected.   
 

[Note: FlexPDE accepts other forms of plot command, including GRID 
plots and HISTORIES.  See the Reference chapter "Sections | 
Monitors and Plots".] 
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3.11. Putting It All Together 
 
In the previous sections, we have gradually built up a problem 
specification. 
 
Putting it all together and adding a TITLE, it looks like this: 
 

TITLE 'Heat flow around an Insulating blob' 
VARIABLES 

Phi  { the temperature } 
DEFINITIONS 

K = 1  { default conductivity } 
R = 0.5  { blob radius } 

EQUATIONS 
Div(-k*grad(phi)) = 0 
 

BOUNDARIES 
REGION 1 'box' 

START(-1,-1)  
VALUE(Phi)=0 LINE TO (1,-1) 
NATURAL(Phi)=0 LINE TO (1,1) 
VALUE(Phi)=1 LINE TO (-1,1) 
NATURAL(Phi)=0 LINE TO CLOSE 

REGION 2 'blob' { the embedded blob } 
k = 0.001 
START 'ring' (R,0)  
ARC(CENTER=0,0) ANGLE=360 TO CLOSE 

PLOTS 
CONTOUR(Phi) 
VECTOR(-k*grad(Phi)) 
ELEVATION(Phi) FROM (0,-1) to (0,1) 
ELEVATION(Normal(-k*grad(Phi))) ON 'ring' 

END 
 

We have defined a complete and meaningful problem in twenty-three 
readable lines. 
 
The output from this script looks like this: 
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4. Some Common Variations 
 
4.1. Controlling Accuracy 
 
FlexPDE applies a consistency check to integrals of the PDE's over the 
mesh cells.  From this it estimates the relative uncertainty in the solution 
variables and compares this to an accuracy tolerance.  If any mesh cell 
exceeds the tolerance, that cell is split, and the solution is recomputed. 
 
The error tolerance is called ERRLIM, and can be set in the SELECT 
section of the script.   
 
The default value of ERRLIM is 0.001, which means that FlexPDE will 
refine the mesh until the estimated error in any variable (relative to the 
variable range) is less than 0.1% over every cell of the mesh.   
 

[Note: This does not mean that FlexPDE can guarantee that the 
solutions is accurate to 0.1% over the domain.  Individual cell errors 
may cancel or accumulate in ways that are hard to predict.] 

 
In our sample problem, we can insert the statement  
 

SELECT ERRLIM=1e-5 
 
as a new section.  This tells FlexPDE to split any cell in which the 
consistency check implies an error of more than 0.001% over the cell. 
 
FlexPDE refines the mesh twice, and completes with a mesh that looks 
like this: 
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In this particular case, the result plots are not noticeably different from 
the default case. 
 

[Note: In time-dependent problems, spatial and temporal errors are 
both set by ERRLIM, but they can also be independently controlled by 
XERRLIM and TERRLIM.  See the Problem Descriptor Reference.] 
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4.2. Computing Integrals 
 
In many cases, it is an integral of some function that is of interest in the 
solution of a PDE problem.  FlexPDE has an extensive repertoire of 
integration facilities, including volume integrals, surface integrals on 
bounding surfaces and line integrals on bounding lines.  The two-
dimensional forms are 
 
• Result = LINE_INTEGRAL(<expression>, <boundary name>) 

  
Computes the integral of <expression> over the named boundary. 
Note: BINTEGRAL is a pseudonym for LINE_INTEGRAL.] 

 
• Result = VOL_INTEGRAL(<expression>, <region name>) 

  
Computes the integral of <expression> over the named region. 
If <region name> is omitted, the integral is over the entire domain. 
 
[Note: INTEGRAL is a pseudonym for VOL_INTEGRAL.]   
[Note: In 2D Cartesian geometry, AREA_INTEGRAL is also the 
same as VOL_INTEGRAL, since the domain is assumed to have a 
unit thickness in Z.] 
 

 
In our example problem, we might define 

DEFINITIONS  
{ the total flux across 'ring':  

(recall that 'ring' is the name of the boundary of 'blob')} 
Tflux = LINE_INTEGRAL(NORMAL(-k*grad(Phi)), 'ring')   
{ the total heat energy in 'blob': } 
Tenergy = VOL_INTEGRAL(Phi, 'blob')   
 

In the case of internal boundaries, there is sometimes a different value of 
the integral on the two sides of the boundary.  The two values can be 
distinguished by further specifying the region in which the integral is to 
be evaluated: 
 

{ the total flux across 'ring': } 
Tflux = LINE_INTEGRAL(NORMAL(-k*grad(Phi)), 'ring', 'box')   
{ evaluated on the 'box' side of the boundary } 
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[Note: Three-dimensional integral forms will be addressed in a later 
section.  A full description of integral operators is presented in the 
Reference section "Elements | Operators | Integral Operators".] 
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4.3. Reporting Numerical Results 
 
In many cases, there are numerical quantities of interest in evaluating or 
classifying output plots.  Any plot command can be followed by the 
REPORT statement: 
 

REPORT <value> AS "title" 
Or just 

REPORT <value>  
 
Any number of REPORTs can be requested following any plot, subject to 
the constraint that the values are printed on a single line at the bottom of 
the plot, and too many reports will run off and be lost. 
 
For instance, we might modify the contour plot of our example plot to say 

 
CONTOUR(Phi)  REPORT(k)  REPORT(INTEGRAL(Phi, 'blob')) 

 
On running the problem, we might see something like this at the bottom 
of the plot: 
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4.4. Summarizing Numerical Results 
 
A special form of plot command is the SUMMARY.  This plot command 
does not generate any pictorial output, but instead creates a page for the 
placement of numerous REPORTs. 
 
SUMMARY may be given a text argument, which will be printed as a 
header. 
 
For example, 

 
SUMMARY 

REPORT(k)  
REPORT(INTEGRAL(Phi,'blob')) as "Heat energy in blob" 
REPORT('no more to say') 

 
In our sample, we will see a separate report page with the following 
instead of a graphic: 
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4.5. Parameter Studies Using STAGES 
 
FlexPDE supports a facility for performing parameter studies within a 
single invocation.  This facility is referred to as "staging".  Using staging, 
a problem can be run repeatedly, with a range of values for a single 
parameter or a group of parameters.   
 
The fundamental form for invoking a staged run is to define one or more 
parameters as STAGED: 
 

DEFINITIONS 
Name = STAGED(<value1>,<value2>,….) 

 
The problem will be re-run as many times as there are values in the 
value list, with "name" taking on consecutive values from the list in 
successive runs. 
 
If the STAGED parameter does not affect the domain dimensions, then 
each successive run will use the result and mesh from the previous run 
as a starting condition.   
 

[Note: This technique can also be used to approach the solution of a 
strongly nonlinear problem, by starting with a linear system and 
gradually increasing the weight on a nonlinear component.] 

 
If the STAGED parameter is used as a dimension in the domain 
definition, then each successive run will be restarted from the domain 
definition, and there will be no carry-over of solutions from one run to the 
next.   
 
As for time-dependent problems (which we will discuss later), variation of 
arbitrary quantities across the stages of a problem can be displayed by 
HISTORY plots.  In staged runs the history is plotted against stage 
number. 
 
As an example, let us run our sample heat flow problem for a range of 
conductivities and plot a history of the top edge temperature. 
 
We will modify the definition of K in the insulator as follows: 
 

DEFINITIONS 
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Kins = STAGED(0.01, 0.1, 1, 10) 
{ Notice that the STAGED specification must appear at the initial 
declaration of a name.  In cannot be used in a regional redefinition. }  

… 
REGION 2 'blob' { the embedded blob } 

K = Kins 
START(R,0) ARC(CENTER=0,0) ANGLE=360 

… 
HISTORY(Phi) AT (0,-R) 

 
 

When this modified descriptor is run, the history plot produces the 
following: 
 

 
 
In a staged run, all PLOTS and MONITORS requested will be presented 
for each stage of the run.   
 
Other Staging Controls 
 
• The global selector STAGES can be used to control the number of 

stages to run.  If this selector appears, it overrides any STAGED lists 
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in the DEFINITIONS section (lists shorter than STAGES will report an 
error).  It also defines the global name STAGE, which can be used 
subsequently in arithmetic expressions. See the Problem Descriptor 
Reference for details. 

 
• The default action is to proceed at once from one stage to the next, but 

you can cause FlexPDE to pause while you examine the plots by 
placing the command AUTOSTAGE=OFF in the SELECT section of 
the script. 
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4.6. Cylindrical Geometry 
 
In addition to two-dimensional Cartesian geometry, FlexPDE can solve 
problems in axisymmetric cylindrical coordinates, (r,z) or (z,r). 
 
Cylindrical coordinates are invoked in the COORDINATES section of the 
script.  Two forms are available, XCYLINDER and YCYLINDER.  The 
distinction between the two is merely in the orientation of the graphical 
displays. 
 
• XCYLINDER places the rotation axis of the cylinder, the Z coordinate, 

along the abscissa (or "x"-axis) of the plot, with radius along the 
ordinate. 

• YCYLINDER places the rotation axis of the cylinder, the Z coordinate, 
along the ordinate (or "y" axis) of the plot, with axial extension along 
the abscissa. 

 
Either form may optionally be followed by a parenthesized renaming of 
the coordinates.  In either case, the names are (abscissa, ordinate).  The 
defaults are  
 

XCYLINDER  implies  XCYLINDER('Z','R'). 
YCYLINDER  implies  YCYLINDER('R','Z'). 

 
4.6.1. Integrals In Cylindrical Geometry 
 
The VOL_INTEGRAL (alias INTEGRAL) operator in Cylindrical 
geometry is weighted by 2*PI*R, representing the fact that the equations 
are solved in a revolution around the axis. 
 
An integral over the cross-sectional area of a region may be requested 
by the operator AREA_INTEGRAL.  This form differs from 
VOL_INTEGRAL in that the 2*PI*R weighting is absent. 
 
Similarly, the operator SURF_INTEGRAL will form the integral over a 
boundary, analogous to the LINE_INTEGRAL operator, but with an area 
weight of 2*PI*R. 
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4.6.2. A Cylindrical Example 
 
Let us now convert our Cartesian test problem into a cylindrical one.  If 
we rotate the box and blob around the left boundary, we will form a torus 
between two circular plates (like a donut in a round box). 
 
These changes will be required: 
 
• We must offset the coordinates, so the left boundary becomes R=0. 
• Since we want the rotation axis in the Y-direction, we must use 

YCYLINDER coordinates. 
• Since 'R' is now a coordinate name, we must rename the 'R' used for 

the blob radius. 
 
The full script, converted to cylindrical coordinates is then: 
 

TITLE 'Heat flow around an Insulating Torus' 
COORDINATES 

YCYLINDER 
VARIABLES 

Phi  { the temperature } 
DEFINITIONS 

K = 1 { default conductivity } 
Rad = 0.5 { blob radius (renamed)} 

EQUATIONS 
Div(-k*grad(phi)) = 0 

BOUNDARIES 
REGION 1 'box' 

START(0,-1)  
VALUE(Phi)=0 LINE TO (2,-1) 
NATURAL(Phi)=0 LINE TO (2,1) 
VALUE(Phi)=1 LINE TO (0,1) 
NATURAL(Phi)=0 LINE TO CLOSE 

REGION 2 'blob' { the embedded blob } 
k = 0.001 
START 'ring' (1,Rad)  
ARC(CENTER=1,0) ANGLE=360 TO CLOSE 

PLOTS 
CONTOUR(Phi) 
VECTOR(-k*grad(Phi)) 
ELEVATION(Phi) FROM (1,-1) to (1,1) 
ELEVATION(Normal(-k*grad(Phi))) ON 'ring' 
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END 
 
The resulting contour and boundary plot look like this: 
 

 
 



 

 
 

43
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4.7. Time Dependence 
 
Unless otherwise defined, FlexPDE recognizes the name "T" (or "t") as 
representing time.  If references to time appear in the definitions or 
equations, FlexPDE will invoke a solution method appropriate to initial-
value problems. 
 
FlexPDE will apply a heuristic control on the timestep used to track the 
evolution of the system.  Initially, this will be based on the time 
derivatives of the variables, and later it will be chosen so that the time 
behavior of the variables is nearly quadratic.  This is done by shortening 
or lengthening the time intervals so that the cubic term in a Taylor 
expansion of the variables in time is below the value of the global 
selector ERRLIM. 
 
In time dependent problems, several new things must be specified: 
 
• The THRESHOLD of meaningful values for each variable (if not 

apparent from initial values). 
• The time-dependent PDE's 
• The time range of interest, 
• The times at which plots should be produced 
• Any history plots that may be desired 
 

[Note: FlexPDE can treat only first derivatives in time.  Second-order 
equations must be split into two equations by defining an intermediate 
variable.] 

 
The time range is specified by a new script section 
 

TIME <start> TO <finish> 
 
 
Plot times are specified by preceding any block of plot commands by a 
time control, in which specific times may be listed, or intervals and end 
times, or a mixture of both: 
 

FOR   T = <t1> <t2> BY <step> TO <t3> …. 
 
We can convert our heat flow problem to a time dependent one by 
including a time term in the heat equation: 
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Div(k*grad(Phi)) = c*dt(Phi) 

 
To make things interesting, we will impose a sinusoidal driving 
temperature at the top plate, and present a history plot of the 
temperature at several internal points. 
 
The whole script with pertinent modifications now looks like this: 
 

TITLE 'Transient Heat flow around an Insulating blob' 
VARIABLES 

Phi (threshold=0.01) { the temperature } 
DEFINITIONS 

K = 1  { default conductivity } 
C = 1  { default heat capacity } 
R = 1/2 

EQUATIONS 
Div(-K*grad(phi)) + C*dt(Phi) = 0 

BOUNDARIES 
REGION 1 'box' 

START(-1,-1)  
VALUE(Phi)=0  LINE TO (1,-1) 
NATURAL(Phi)=0 LINE TO (1,1) 
VALUE(Phi)=sin(t) LINE TO (-1,1) 
NATURAL(Phi)=0 LINE TO CLOSE 

REGION 2 'blob' { the embedded blob } 
K = 0.001 
C = 0.1 
START(R,0)  
ARC(CENTER=0,0) ANGLE=360 

TIME 0 TO 2*pi 
PLOTS 

FOR T = pi/2 BY pi/2 TO 2*pi 
CONTOUR(Phi) 
VECTOR(-K*grad(Phi)) 
ELEVATION(Phi) FROM (0,-1) to (0,1) 

HISTORIES 
HISTORY(Phi) AT (0,r/2) (0,r) (0,3*r/2) 

END 
 

At the end of the run (t=2*pi), the contour and history look like this: 
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4.7.1. Bad Things To Do In Time Dependent 
Problems 
 
Inconsistent Initial Conditions and Instantaneous Switching 
 
If you start off a time-dependent calculation with initial conditions that are 
inconsistent, or turn on boundary values instantaneously at the start time 
(or some later time), you induce strong transient signals in the system.  
This will cause the time step, and probably the mesh size as well, to be 
cut to tiny values to track the transients.   
 
Unless it is specifically the details of these transients that you want to 
know, you should start with initial conditions that are a consistent solution 
to a steady problem, and then turn on the boundary values, sources or 
driving fluxes over a time interval that is meaningful in your problem.   
 
It is a common mistake to think that simply turning on a source is a 
smooth operation.  It is not.  Mathematically, the turn-on time is 
significantly less that a femtosecond (zero, in fact), with attendant 
terahertz transients.  If that's the problem you pose, then that's the 
problem FlexPDE will try to solve.  More realistically, you should turn on 
your sources over a finite time.  Electrical switches take milliseconds, 
solid state switches take microseconds.  But if you only want to see what 
happens after a second or two, then fuzz the turn-on. 
 
Turning on a driving flux or a volume source is somewhat more gentle 
than a boundary value, because it implies a finite time to raise the 
boundary value to a given level.  But there is still a meaningful time 
interval over which to turn it on. 
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4.8. Eigenvalues and Modal Analysis 
 
FlexPDE can also compute the eigenvalues and eigenfunctions of a PDE 
system. 
 
Consider the homogeneous time-dependent heat equation as in our 
example above,  

0C K
t
φ φ∂

− ∇ ∇ =
∂

i  

together with homogeneous boundary conditions   
0φ =     

and/or 

0
n
φ αφ∂

+ =
∂

    

on the boundary. 
 
If we wish to solve for steady oscillatory solutions to this equation, we 
may assert 

( , , ) ( , )exp( )x y t x y tφ ψ β= −  
 
The PDE then becomes  

0K
C
ψ λψ

λ β
∇ ∇ + =

= −
i

    

The values of λ  and ψ  for which this equation has nontrivial solutions 
are known as the eigenvalues and eigenfunctions of the system, 
respectively.  All steady oscillatory solutions to the PDE can be made up 
of combinations of the various eigenfunctions, together with a particular 
solution that satisfies any non-homogeneous boundary conditions. 
 
Two modifications are necessary to our basic steady-state script for the 
sample problem to cause FlexPDE to solve the eigenvalue problem. 
 
• A value must be given to the MODES parameter in the SELECT 

section.  This number determines the number of distinct values of λ  
that will be calculated.  The values reported will be those with lowest 
magnitude. 
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• The equation must be written using the reserved name LAMBDA for 
the eigenvalue. 

• The equation should be written so that values of LAMBDA are positive, 
or problems with the ordering during solution will result.  The full 
descriptor for the eigenvalue problem is then: 

 
TITLE 'Modal Heat Flow Analysis' 
SELECT  

modes=4 
VARIABLES 

Phi  { the temperature } 
DEFINITIONS 

K = 1 { default conductivity } 
R = 0.5 { blob radius } 

EQUATIONS 
Div(k*grad(Phi)) + LAMBDA*Phi = 0 

BOUNDARIES 
REGION 1 'box' 

START(-1,-1)  
VALUE(Phi)=0 LINE TO (1,-1) 
NATURAL(Phi)=0 LINE TO (1,1) 
VALUE(Phi)=0 LINE TO (-1,1) 
NATURAL(Phi)=0 LINE TO CLOSE 

REGION 2 'blob' { the embedded blob } 
k = 0.2  { This value makes more interesting pictures } 
START 'ring' (R,0)  
ARC(CENTER=0,0) ANGLE=360 TO CLOSE 

PLOTS 
CONTOUR(Phi) 
VECTOR(-k*grad(Phi)) 
ELEVATION(Phi) FROM (0,-1) to (0,1) 
ELEVATION(Normal(-k*grad(Phi))) ON 'ring' 

END 
 
The solution presented by FlexPDE will have the following 
characteristics: 
 
• The full set of PLOTS will be produced for each of the requested 

modes. 
• An additional plot page will be produced listing the eigenvalues. 
• The mode number and eigenvalue will be reported on each plot. 
• LAMBDA is available as a defined name for use in arithmetic 

expressions. 
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The first two contours are as follows: 
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4.8.1. The Eigenvalue Summary 
 
When running an Eigenvalue problem, FlexPDE automatically produces 
an additional plot displaying a summary of the computed eigenvalues. 
 
If the user specifies a SUMMARY plot, then this plot will supplant the 
automatic summary, allowing the user to add reports to the eigenvalue 
listing. 
 
For example, we can add to our previous descriptor the plot 
specification: 
 

SUMMARY 
REPORT(lambda) 
REPORT(integral(phi)) 

 

 

 
 

52

This produces the following report on the summary page: 
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5. Addressing More Difficult 
Problems 
 
If  heat flow on a square were all we wanted to do, then there would 
probably be no need for FlexPDE.  The power of the FlexPDE system 
comes from the fact that almost any functional form may be specified for 
the material parameters, the equation terms, or the output functions.  
The geometries may be enormously complex, and the output 
specification is concise and powerful. 
 
In the following sections, we will address some of the common situations 
that arise in real problems, and show how they may be treated in 
FlexPDE. 
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5.1. Nonlinear Coefficients and Equations 
 
One common complication that arises is that either the terms of the 
equation or the material properties are complicated functions of the 
system variables.  FlexPDE understands this, and has made full 
provision for handling such systems. 
 
Suppose, for example, that the conductivity in the 'blob' of our example 
problem were in fact a strong function of the temperature.  Say, for 
example, that K=exp(-5*phi).  The solution couldn't be simpler.  Just 
define it the way you want it and click "run": 

 
… 
REGION 2 'blob' { the embedded blob } 

k = exp(-5*phi) 
… 

 
The appearance of a nonlinear dependence will automatically activate 
the nonlinear solver, and all the dependency details will be handled by 
FlexPDE. 
 
The modified result appears immediately: 
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Nonlinear terms in the equation are just as easy.  If our system has a 
nonlinear sinusoidal source, for example, we may type:  

 
EQUATIONS 

Div(k*grad(phi)) + 0.01*phi*sin(phi) = 0 
 
Click "run", and the solution appears: 
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5.1.1. Complications Associated with Nonlinear 
Problems 
 
Actually, nonlinear problems are frequently more difficult than we have 
implied above, for several reasons. 
 
• Nonlinear problems can have more than one solution. 
• A nonlinear problem may not, in fact, have a solution at all. 
 
FlexPDE uses a Newton-Raphson iteration process to solve nonlinear 
systems.  This technique can be very sensitive to the initial estimate of 
the solution.  If the starting conditions are too far from the actual solution, 
it may be impossible to find the answer, even though it might be quite 
simple from a different starting value. 
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There are several things that can be done to help a nonlinear problem 
find a solution: 
 
• Provide as good an initial value as you can, using the INITIAL 

VALUES section of the script. 
• Ensure that the boundary conditions are consistent. 
• Use STAGES to progress from a linear to a nonlinear system, allowing 

the linear solution to provide initial conditions for the nonlinear one. 
• Pose the problem as a time-dependent one, with time as an artificial 

relaxation dimension. 
• Use SELECT CHANGELIM to limit the excursion at each step and 

force FlexPDE to creep toward a solution. 
• Use MONITORS to display useful aspects of the solution, to help 

identify troublesome terms. 
 
We will return in a later section to the question of intransigent nonlinear 
problems. 
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5.2. Natural Boundary Conditions 
 
The term "natural boundary condition" usually arises in the calculus of 
variations, and since the finite element method is fundamentally one of 
minimization of an error functional, the term arises also in this context. 
 
The term has a much more intuitive interpretation, however, and it is this 
which we will try to present. 
 
Consider a Laplace equation,  
 

0u∇ ∇ =i  
 
The Divergence Theorem says that the integral of this equation over all 
space is equal merely to the integral over the bounding surface of the 
normal component of the flux,  
 

( ) ( )
A S

u dA n u dl∇ ∇ = ∇∫∫ ∫i iv  

(we have presented the equation in two dimensions, but it is valid in 
three dimensions as well). 
 
The surface value of  n u∇i  is in fact the "natural boundary condition" 
for the Laplace (and Poisson) equation.  It is the way in which the system 
inside interacts with the system outside.  It is the (negative of the) flux of 
the quantity u that crosses the system boundary. 
 
The Divergence Theorem is a particular manifestation of the more 
general process of Integration by Parts.  You will remember the basic 
rule, 

b bb

aa a
udv uv vdu= −∫ ∫  

The term uv  is evaluated at the ends of the integration interval and 
gives rise to surface terms.  Applied to the integration of a divergence, 
integration by parts produces the Divergence Theorem. 
 
FlexPDE applies integration by parts to all terms of the partial differential 
equations that contain second-order derivatives of the system variables.  
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In the Laplace equation, of course, this means the only term that 
appears. 
 
In order for a solution of the Laplace equation (for example) to be 
achieved, one must specify at all points of the boundary either the value 
of the variable (in this case, u ) or the value of  n u∇i . 
 
In the notation of FlexPDE,  
 

VALUE(u)=u1  supplies the former, and  
NATURAL(u)=F  supplies the latter.   

 
In other words, 
 

The NATURAL boundary condition statement in FlexPDE supplies 
the value of the surface flux, as that flux is defined by the 
integration of the PDE by parts. 

 
 
Consistent with our discussion of nonlinear equations, the value given for 
the surface flux may be a nonlinear value.   
 
The radiation loss from a hot body, for example, is proportional to the 
fourth power of temperature, and the statement 

NATURAL(u) = -k*u^4 
is a perfectly legal boundary condition for the Laplace equation in 
FlexPDE. 
 
 
 
 
5.2.1. Some Typical Cases 
 
Since integration by parts is a fundamental mathematical operation, it 
will come as no surprise that its application can lead to many of the 
fundamental rules of physics, such as Ampere's Law.   
 
For this reason, the Natural boundary condition is frequently a statement 
of very fundamental conservation laws in many applications. 
 
But it is not always obvious at first what its meaning might be in 
equations which are more elaborate than the Laplace equation. 
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So let us first list some basic terms and their associated natural 
boundary condition contributions (we present these rules for two-
dimensional geometry, but the three-dimensional extensions are readily 
seen). 
 
• Applied to the term ( ) /f u x∂ ∂ , integration by parts yields 

( ) ( ) ( )f u dxdy f u dy f u dl
x

α∂
= =

∂∫∫ ∫ ∫v v  

Here  is the x-direction cosine of the surface normal and  is 
the differential path length.  Since FlexPDE applies integration by 
parts only to second order terms, this rule is applied only if the 

function  contains further derivatives of .  Similar rules apply 
to derivatives with respect to other coordinates. 

 

• Applied to the term 2 2( ) /f u x∂ ∂ , integration by parts yields 
2

2

( ) ( ) ( )f u f u f udxdy dy dl
x x x

α∂ ∂ ∂
= =

∂ ∂ ∂∫∫ ∫ ∫v v  

Since this term is second order, it will always result in a contribution 
to the natural boundary condition. 

 

• Applied to the term ( )F u∇
G
i , integration by parts yields the 

Divergence Theorem 

ˆ( ) ( )F u dxdy F u ndl∇ =∫∫ ∫
G G
i iv  

Here n̂  is the outward surface normal unit vector.   
As with the x-derivative case, integration by parts will not be applied 

unless the vector F
G

 itself contains further derivatives of u. 
 

• Applied to the term ( )F u∇ ×
G

, integration by parts yields the Curl 
Theorem 

ˆ( ) ( )F u dxdy n F u dl∇ × = ×∫∫ ∫
G G

v  

 
Using these formulas, we can examine what the natural boundary 
condition means in several common cases: 
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The Heat Equation 

Div(-k*grad(Temp)) + Source = 0 
Natural(Temp) = outward surface-normal flux = normal(-k*grad(Temp)) 
[Notice that we have written the PDE in terms of heat flux with the 
negative sign imbedded in the equation.  If the sign is left out, the sign of 
the Natural is reversed as well.] 
 
One-dimensional heat equation 

dx(-k*dx(Temp)) + Source = 0 
Natural(Temp) = outward surface-normal component of flux = (-
k*dx(temp)*nx), 
where nx is the x-direction cosine of the surface normal.   
Similar forms apply for other coordinates. 
 
Magnetic Field Equation 

curl(curl(A)/mu) = J 
Natural(A) = tangential component of H = tangential(curl(A)/mu) 
 
Convection Equation 

dx(u)-dy(u)=0 
Natural(u) is undefined, because there are no second-order terms. 
See the section "Hyperbolic systems" for further discussion. 
 
 
 
 
5.2.2. An Example of a Flux Boundary Condition 
 
Let us return again to our heat flow test problem and investigate the 
effect of the Natural boundary condition.   As originally posed, we 
specified Natural(Phi)=0 on both sidewalls.  This corresponds to zero flux 
at the boundary.  Alternatively, a convective cooling loss at the boundary 
would correspond to a flux 
 

Flux = -K*grad(Phi) = Phi – Phi0 
 
where Phi0 is a reference cooling temperature.  With convectively cooled 
sides, our boundary specification looks like this (assuming Phi0=0): 
 

 
REGION 1 'box' 

START(-1,-1)  
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VALUE(Phi)=0  LINE TO (1,-1) 
NATURAL(Phi)=Phi LINE TO (1,1) 
VALUE(Phi)=1  LINE TO (-1,1) 
NATURAL(Phi)=Phi LINE TO CLOSE 

 
The result of this modification is that the isotherms curve upward: 
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5.3. Discontinuous Variables 
 
The default behavior of FlexPDE is to consider all variables to be 
continuous across material interfaces.  This arises naturally from the 
finite element model, which populates the interface with nodes that are 
shared by the material on both sides. 
 
FlexPDE supports discontinuities in variables at material interfaces by 
use of the words CONTACT and JUMP in the script language.   
 
CONTACT(V) is a special form of NATURAL boundary condition which 
also causes the affected variable to be stored in duplicate nodes at the 
interface, capable of representing a double value. 
 
JUMP(v) means the instantaneous change in the value of variable "v" 
when moving outward across an interface from inside a given material.  
At an interface between materials '1' and '2', JUMP(V) means (V2-V1) in 
material '1', and (V1-V2) in material '2'. 
 
The expected use of JUMP is in a CONTACT Boundary Condition 
statement on an interior boundary.  The combination of CONTACT and 
JUMP causes a line or surface source to be generated proportional to 
the difference between the two values. 
 
JUMP may also be used in other boundary condition statements, but it is 
assumed that the argument of the JUMP is a variable for which a 
CONTACT boundary condition has been specified.  See the example 
"Samples | Misc | Discontinuous_Variables | 
Contact_Resistance_Heating.pde" for an example of this kind of use. 
 
The interpretation of the JUMP operator follows the model of contact 
resistance, as explained in the next section. 
 
5.3.1. Contact Resistance 
 
The problem of contact resistance between two conductors is a typical 
one requiring discontinuity of the modeled variable.   
 
In this problem, a very thin resistive layer causes a jump in the 
temperature or voltage on the two sides of an interface.  The magnitude 
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of the jump is proportional to the heat flux or electric current flowing 
across the resistive film.  In microscopic analysis, of course, there is a 
physical extent to the resistive material. But its dimensions are such as 
to make true modelling of the thickness inconvenient in a finite element 
simulation. 
 
In the contact resistance case, the heat flux across a resistive interface 
between materials '1' and '2' as seen from side '1' is given by  

F1 = -K1*dn(T) = -(T2-T1)/R   
where F1 is the value of the outward heat flux, K1 is the heat 
conductivity, dn(T) is the outward normal derivative of T, R is the 
resistance of the interface film, and T1 and T2 are the two values of the 
temperature at the interface.   
 
As seen from material '2',  

F2 = -K2*dn(T) = -(T1-T2)/R = -F1 
Here the normal has reversed sign, so that the outflow from '2' is the 
negative of the outflow from '1', imposing energy conservation. 
 
The Natural Boundary Condition for the heat equation  

div(-K*grad(T)) = H  
is given by the divergence theorem as 

Natural(T) = -K*dn(T),  
representing the outward heat flux. 
This flux can be related to a discontinuous variable by use of the 
CONTACT boundary condition in place of the NATURAL. 
 
The FlexPDE expression JUMP(T) is defined as (T2-T1) in material '1' 
and (T1-T2) in material '2'. 
 
The representation of the contact resistance boundary condition is 
therefore 

CONTACT(T) = -JUMP(T)/R 
This statement means the same thing in both of the materials sharing the 
interface.  [Notice that the sign applied to the JUMP reflects the sign of 
the divergence term.] 
 
We can modify our previous example problem to demonstrate this, by 
adding a heat source to drive the jump, and cooling the sidewalls.  The 
restated script is: 
  

TITLE 'Contact Resistance on a heated blob' 
VARIABLES 
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Phi  { the temperature } 
DEFINITIONS 

K = 1 { default conductivity } 
R = 0.5 { blob radius } 
H = 0 { internal heat source } 
Res = 0.5 { contact resistance } 

EQUATIONS 
Div(-k*grad(phi)) = H 
 

BOUNDARIES 
REGION 1 'box' 

START(-1,-1)  
VALUE(Phi)=0 { cold outer walls } 
LINE TO (1,-1) TO (1,1) TO (-1,1) TO CLOSE 

REGION 2 'blob' { the embedded blob } 
H = 1 { heat generation in the blob } 
START 'ring' (R,0)  
CONTACT(phi) = -JUMP(phi)/Res 
ARC(CENTER=0,0) ANGLE=360 TO CLOSE 

PLOTS 
CONTOUR(Phi) 
SURFACE(Phi) mesh 
VECTOR(-k*grad(Phi)) 
ELEVATION(Phi) FROM (0,-1) to (0,1) 
ELEVATION(Normal(-k*grad(Phi))) ON 'ring' 

END 
 
The surface plot generated by running this problem shows the 
discontinuity in temperature: 
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5.3.2. Decoupling 
 
Using the Contact Resistance model, one can effectively decouple the 
values of a given variable in two adjacent regions.  In the previous 
example, if we replace the jump boundary condition with the statement 

 
CONTACT(phi) = 0*JUMP(phi) 

 
the contact resistance is infinite, and no flux can pass between the 
regions. 
 

[Note:  The JUMP statement is recognized as a special form. Even 
though the apparent value of the right hand side here is zero, it is not 
removed by the arithmetic expression simplifier.] 
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5.3.3. Using JUMP in problems with many 
variables 
 
An expression JUMP(V) may appear in any boundary condition 
statement  on a boundary for which the argument variable V has been 
given a CONTACT boundary condition.   
 
In an electrical resistance case, for example, the voltage undergoes a 
jump across a contact resistance, and the current through this contact is 
a source of heat for a heatflow equation.  The following example, though 
not strictly realizable physically, diagrams the technique.  Notice that the 
JUMP of Phi appears as a source term in the Natural boundary condition 
for Temp.  Phi, having appeared in a CONTACT boundary condition 
definition, is stored as a double-valued quantity, whose JUMP is 
available to the boundary condition for Temp.  Temp, which does not 
appear in a CONTACT boundary condition statement, is a single-valued 
variable at the interface. 
 

TITLE 'Contact Resistance as a heat source' 
VARIABLES 

Phi  { the voltage } 
Temp { the temperature } 

DEFINITIONS 
Kd = 1 { dielectric constant } 
Kt = 1 { thermal conductivity } 
R = 0.5 { blob radius } 
Q = 0 { space charge density } 
Res = 0.5 { contact resistance } 

EQUATIONS 
Phi: Div(-kd*grad(phi)) = Q 
Temp: Div(-kt*grad(temp) = 0 

BOUNDARIES 
REGION 1 'box' 

START(-1,-1)  
VALUE(Phi)=0 { grounded outer walls } 
VALUE(Temp)=0 { cold outer walls } 
LINE TO (1,-1) TO (1,1) TO (-1,1) TO CLOSE 

REGION 2 'blob' { the embedded blob } 
Q = 1 { space charge in the blob } 
START 'ring' (R,0)  
CONTACT(phi) = -JUMP(phi)/Res 
{ the heat source is the voltage difference times the current } 
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NATURAL(temp) = -JUMP(Phi)^2/Res 
ARC(CENTER=0,0) ANGLE=360 TO CLOSE 

PLOTS 
CONTOUR(Phi) SURFACE(Phi) 
CONTOUR(temp) SURFACE(temp) 

END 
 
The temperature shows the effect of the surface source: 
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6. Using FlexPDE in One-Dimensional 
Problems 
 
FlexPDE treats problems in one space dimension as a degenerate case 
of two dimensional problems. 
The construction of a problem descriptor follows the principles laid out in 
previous sections, with the following specializations: 
 
• The COORDINATES specification must be CARTESIAN1, 

CYLINDER1 or SPHERE1 
• Coordinate positions are given by one dimensional points, as in  

START(0) LINE TO (5) 
• The boundary path is in fact the domain, so boundary conditions are 

not specified along the path. Instead we use the existing syntax of 
POINT VALUE and POINT LOAD to specify boundary conditions at 
the endpoints of the domain: 

START(0) POINT VALUE(u)=0 LINE TO (5) POINT LOAD(u)=1 
• Only ELEVATION and HISTORY are meaningful plots in one 

dimension. 
 
Our basic example problem does not have a one-dimensional analog, 
but we can adapt it to an insulating spherical shell between two spherical 
reservoirs as follows: 

 
TITLE 'Heat flow through an Insulating shell' 
COORDINATES 
  Sphere1 
VARIABLES 

Phi  { the temperature } 
DEFINITIONS 

K = 1 { default conductivity } 
R1 = 1 { the inner reservoir }  
Ra = 2 { the insulator inner radius } 
Rb = 3 { the insulator outer radius }  
R2 = 4 { the outer reservoir } 

EQUATIONS 
Div(-k*grad(phi)) = 0 
 

BOUNDARIES 
REGION 1   { the total domain } 
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START(R1)  POINT VALUE(Phi)=0  
LINE TO (R2) POINT VALUE(Phi)=1  
{ note: no ‘Close’! } 

REGION 2 'blob' { the embedded layer } 
k = 0.001 
START (Ra) LINE TO (Rb) 

PLOTS 
ELEVATION(Phi) FROM (R1) to (R2) 

END 
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7. Using FlexPDE in Three-
Dimensional Problems 
 
First, a caveat:  
Three-dimensional computations are not simple.  We have tried to make 
FlexPDE as easy as possible to use, but the setup and interpretation of 
3D problems relies heavily on the concepts explained in 2D applications 
of FlexPDE.  Please do not try to jump in here without reading the 
preceding 2D discussion. 
 
Extrusion: 
FlexPDE constructs a three-dimensional domain by extruding a two-
dimensional domain into a third dimension.  This third dimension can be 
divided into layers, possibly with differing material properties and 
boundary conditions in each layer.  The interface surfaces which 
separate the layers need not be planar, but there are some restrictions 
placed on the shapes that can be defined in this way. 
 
The finite element model constructed by FlexPDE in three-dimensional 
domains is fully general.  The domain definition process is not. 
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7.1. The Concept of Extrusion 
 
The fundamental idea of extrusion is quite simple; a square extruded into 
a third dimension becomes a cube; a circle becomes a cylinder.  Given 
spherical layer surfaces, the circle can also become a sphere.   
 

[Note: It is important to consider carefully the characteristics of any 
given problem, to determine the orientation most amenable to 
extrusion.] 

 
What happens if we extrude our simple 2D heat flow problem into a third 
dimension?  Setting the extrusion distance to half the plate spacing, we 
get a cylinder imbedded in a brick, as we see in the following figure: 
 

 
 
A cross-section at any value of Z returns the original 2D figure. 
 
A cross-section cut at Y=0 shows the extruded structure: 
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7.2. Extrusion Notation in FlexPDE 
 
Performing the extrusion above requires three basic changes in the 2D 
script: 
 
• The COORDINATES section must specify CARTESIAN3. 
• A new EXTRUSION section must be added to specify the layering of 

the extrusion. 
• PLOTS and MONITORS must be modified to specify any cut planes or 

surfaces on which the display is to be computed. 
 
There are two forms for the EXTRUSION section, the elaborate form and 
the shorthand form.  In both cases, the layers of the model are built up in 
order from small to large Z. 
 
In the elaborate form, the dividing SURFACES and the intervening 
LAYERS are each named explicitly, with algebraic formulas given for 
each dividing surface.   
 

[Note: With this usage, we have overloaded the word SURFACE.  As 
a plot command, it can mean a form of graphic output in which the 
data are presented as a three-dimensional surface; or, in this new 
case, it can mean a dividing surface between extrusion layers.  The 
distinction between the two uses should be clear from the context.] 

 
In the simple case of our extruded cylinder in a square, it looks like this: 
 

EXTRUSION 
SURFACE 'Bottom'  z=0 
LAYER 'Everything' 
SURFACE 'Top'   z=1 

 
The bottom and top surfaces are named, and given simple planar 
shapes.   
The layer between these two surfaces comprises everything in the 
domain, so we can name it 'Everything'. 
 
In the shorthand form, we merely state the Z-formulas: 

EXTRUSION z = 0, 1 
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In this case, the layers and surfaces must later be referred to by number.  
The first surface, z=0, is identified as "SURFACE 1".  The second 
surface, z=1, as "SURFACE 2". 
 
Notice that there is no distinction, as far as the layer definition is 
concerned, between the parts of the layer which are in the cylinder and 
the parts of the layer which are outside the cylinder.  This distinction is 
made by combining the LAYER concept with the REGION concept of the 
2D base plane representation.  In a vertical cross-section we can label 
the parts as follows: 
 

 
Notice that the cylinder can be uniquely identified as the intersection of 
the 'blob' region of the base plane with the 'Everything' layer of the 
extrusion. 
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7.3. Layering 
 
Now suppose that we wish to model a canister rather than a full length 
cylinder.  This requires that we break up the material stack above region 
2 into three parts, the canister and the continuation of the box material 
above and below it. 
 
We do this by specifying three layers (and four interface surfaces):  
 

EXTRUSION 
SURFACE "Bottom"  z=-1/2 

LAYER "Underneath" 
SURFACE "Can Bottom"  z=-1/4 

LAYER "Can" 
SURFACE "Can Top"  z=1/4 

LAYER "Above" 
SURFACE "Top"   z=1/2 

 
We have now divided the 3D figure into six logical compartments: three 
layers above each of two base regions.   
 
Each of these compartments can be assigned unique material 
properties, and if necessary, unique boundary conditions.   
 
The cross section now looks like this: 
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It would seem that we have nine compartments, but recall that region 1 
completely surrounds the cylinder, so the left and right parts of region 1 
above are joined above and below the plane of the paper.  This results in 
six 3D volumes, denoted by the six colors in the figure. 
 
We stress at this point that it is neither necessary nor correct to try to 
specify each compartment as a separate entity.  You do not need a 
separate layer and region specification for each material compartment, 
and repetition of identical regions in the base plane or layers in the 
extrusion will cause confusion.   
 
The compartment structure is fully specified by the two coordinates 
REGION and LAYER, and any compartment is identified by the 
intersection of the REGION in the base plane with the LAYER in the 
extrusion. 
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7.4. Setting Material Properties by Region 
and Layer 
 
In our 2D problem, we specified the conductivity of the blob inside the 
REGION definition for the blob, and that continues to be the technique in 
3D.   
 
The difference now is that we must also specify the LAYER to which the 
definition applies.  We do this with a LAYER qualification clause: 

 
REGION 2 'blob' { the embedded blob } 

LAYER 'Can'  K = 0.001 
START 'ring' (R,0)  
ARC(CENTER=0,0) ANGLE=360 

 
Without the LAYER qualification clause, the definition would apply to all 
layers lying above region 2 of the base plane.  Here, the presence of the 
parameter definition inside a REGION and qualified by a LAYER selects 
a specific 3D compartment to which the specification applies. 
 
In the following diagram, we have labeled each of the six distinct 
compartment with a (region,layer) coordinate. 

 
 
The comprehensive logical structure of parameter redefinitions in the 
BOUNDARIES section with the location of parameter redefinition 
specifications in this grid can be described for the general case as 
follows: 
 

BOUNDARIES 
 
REGION 1      

params(1,all) 
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{ parameter redefinitions for all layers of region 1 } 
LAYER 1   

params(1,1)    
{ parameter redefinitions restricted to layer 1 of region 1 } 

LAYER 2   
params(1,2)    
{ parameter redefinitions restricted to layer 2 of region 1 } 

LAYER 3   
params(1,3)    
{ parameter redefinitions restricted to layer 3 of region 1 } 

START(,)   .... TO CLOSE  { trace the perimeter } 
 
REGION 2     

params(2,all)  
{ parameter redefinitions for all layers of region 2 } 
LAYER 1   

params(2,1)    
{ parameter redefinitions restricted to layer 1 of region 2 } 

LAYER 2   
params(2,2)    
{ parameter redefinitions restricted to layer 2 of region 2 } 

LAYER 3   
params(2,3)    
{ parameter redefinitions restricted to layer 3 of region 2 } 

START(,)   .... TO CLOSE  { trace the perimeter } 
 
{ ... and so forth for all regions } 
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7.5. Void Compartments 
 
The reserved word VOID is treated syntactically the same as a 
parameter redefinition.  If this word appears in any of the LAYER-
qualified positions above, then that (region,layer) compartment will be 
excluded from the domain. 

 
REGION 2 'blob' { the embedded blob } 

LAYER 'Can'  VOID 
START 'ring' (R,0)  
ARC(CENTER=0,0) ANGLE=360 

 
 

 
 

 
 

The example problem "Samples | Misc | 3D_Domains | 3D_Void.pde" 
demonstrates this usage. 
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7.6. Limited Regions 
 
In what we have discussed so far, the region structure specified in the 
2D base plane has been propagated unchanged throughout the 
extrusion dimension.  FlexPDE uses the specifier LIMITED REGION to 
restrict the defined region to a specified set of layers and/or surfaces. 
 
Instead of propagating throughout the extrusion dimension, a LIMITED 
REGION exists only in the layers and surfaces explicitly referenced in 
the declarations within the region.  Mention of a layer causes the 
LIMITED REGION to exist in the specified layer and in its bounding 
surfaces.  Mention of a surface causes the LIMITED REGION to exist in 
the specified surface. 
 
In our ongoing example problem, we can specify: 
 

LIMITED REGION 2 'blob' { the embedded blob } 
LAYER 'Can'  K = 0.001 
START 'ring' (R,0)  
ARC(CENTER=0,0) ANGLE=360 TO CLOSE 

 
In this form, the cannister is not propagated through the "Above" and 
"Underneath" layers: 
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7.7. Specifying Plots on Cut Planes 
 
In two-dimensional problems, the CONTOUR, SURFACE, VECTOR, 
GRID output forms display data values on the computation  plane.   
 
In three dimensions, the same displays are available on any cut plane 
through the 3D figure. The specification of this cut plane is made by 
simply appending the equation of a plane to the plot command, qualified 
by 'ON': 
 

PLOTS 
CONTOUR(Phi) ON x=0 
 

[Note: More uses of the ON clause, including plots on extrusion 
surfaces,  will be discussed later.] 

 
We can also request plots of the computation grid (and by implication the 
domain structure) with the GRID command: 
 

GRID(x,z)  ON y=0 
 
This command will draw a picture of the intersection of the plot plane 
with the tetrahedral mesh structure currently being used by FlexPDE.  
The plot will be painted with colors representing the distinct material 
properties present in the cross-section.  3D compartments with identical 
properties will appear in the same color.  The arguments of the GRID 
plot are the values to be displayed as the abscissa and ordinate 
positions.  Deformed grids can be displayed merely by modifying the 
arguments. 
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7.8. The Complete 3D Canister 
 
With all the described modifications installed, the full script for the 3D 
canister problem is as follows: 
 

TITLE 'Heat flow around an Insulating Canister' 
COORDINATES 

Cartesian3 
VARIABLES 

Phi  { the temperature } 
DEFINITIONS 

K = 1 { default conductivity } 
R = 0.5 { blob radius } 

EQUATIONS 
Div(-k*grad(phi)) = 0  

EXTRUSION 
SURFACE 'Bottom'  z=-1/2 

LAYER 'underneath' 
SURFACE 'Can Bottom'  z=-1/4 

LAYER 'Can' 
SURFACE 'Can Top'  z=1/4 

LAYER 'above' 
SURFACE 'Top'   z=1/2 

BOUNDARIES 
REGION 1 'box' 

START(-1,-1)  
VALUE(Phi)=0  LINE TO (1,-1) 
NATURAL(Phi)=0 LINE TO (1,1) 
VALUE(Phi)=1  LINE TO (-1,1) 
NATURAL(Phi)=0 LINE TO CLOSE 

LIMITED REGION 2 'blob' { the embedded blob } 
LAYER 2 k = 0.001  { the canister only } 
START 'ring' (R,0)  
ARC(CENTER=0,0) ANGLE=360 TO CLOSE 

PLOTS 
GRID(y,z) ON x=0 
CONTOUR(Phi) ON x=0 
VECTOR(-k*grad(Phi)) ON x=0 
ELEVATION(Phi) FROM (0,-1,0) to (0,1,0) { note 3D coordinates } 

END 
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Since we have specified no boundary conditions on the top and bottom 
extrusion surfaces, they default to zero flux.  This is the standard default, 
for reasons explained in an earlier section. 
 
The first three of the requested PLOTS are: 
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7.9. Setting Boundary Conditions in 3D 
 
The specification of boundary conditions in 3D problems is an extension 
of the techniques used in 2D.   

 
• Boundary condition specifications that in 2D applied to a bounding 

curve are applied in 3D to the extruded sidewalls generated by that 
curve. 

• The qualifier LAYER <number> or LAYER <name> may be applied to 
such a sidewall boundary condition to restrict its application to a 
specific layer of the sidewall. 

• Boundary conditions for extrusion surfaces are constructed as if they 
were parameter redefinitions over a REGION or over the entire 2D 
domain.  In these cases, the qualifier SURFACE <number> or 
SURFACE <name> must precede the boundary condition definition. 

 
In the following figure, we have labeled the various surfaces which can 
be assigned distinct boundary conditions.  Layer interface surfaces have 
been labeled with an "s", while sidewall surfaces have been labeled with 
"w".  We have shown only a single sidewall intersection in our cross-
sectional picture, but in fact each segment of the bounding trace in the 
base plane can specify a distinct "w" type wall boundary condition. 
 

 
The comprehensive logical structure of the BOUNDARIES section with 
the locations of the boundary condition specifications in 3D can be 
diagrammed as follows: 
 

BOUNDARIES 
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SURFACE 1   
s(all, 1)   { boundary conditions on surface 1 over full domain } 

SURFACE 2   
s(all, 2)   { boundary conditions on surface 2 over full domain } 
{…other surfaces } 

REGION 1     
SURFACE 1   

s(1,1) { boundary conditions on surface 1, restricted to region 1 } 
SURFACE 2   

s(1,2) { boundary conditions on surface 2, restricted to region 1 } 
… 

START(,)    { -- begin the perimeter of region m } 
w(1,..) { boundary conditions on following segments of sidewall 
of region 1 on all layers } 
LAYER 1   

w(1,1) { boundary conditions on following segments of 
sidewall of region 1, restricted to layer 1 } 

LAYER 2   
w(1,2) { boundary conditions on following segments of 
sidewall of region 1, restricted to layer 2 } 

… 
LINE TO ....        

{ segments of the base plane boundary with above BC's }           
LAYER 1   

w(1,1) { new boundary conditions on following segments of 
sidewall of region 1, restricted to layer 1 } 

… 
LINE TO .... 
{  continue the perimeter of region 1 with modified boundary 
conditions } 
TO CLOSE 

REGION 2 
SURFACE 1   

s(2,1) { boundary conditions on surface 1, restricted to region 2 } 
SURFACE 2   

s(2,2) { boundary conditions on surface 2, restricted to region 2 } 
… 

START(,)    { -- begin the perimeter of region m } 
w(2,..) { boundary conditions on following segments of sidewall of 
region 2 on all layers } 
LAYER 1   

w(2,1) { boundary conditions on following segments of sidewall 
of region 2, restricted to layer 1 } 



 

 
 

89

LAYER 2   
w(2,2) { boundary conditions on following segments of sidewall 
of region 2, restricted to layer 2 } 

… 
LINE TO ....        
{ segments of the base plane boundary with above BC's }  

 
LAYER 1   

w(2,1) { new boundary conditions on following segments of 
sidewall of region 2, restricted to layer 1 } 
… 

LINE TO .... 
{  continue the perimeter of region 2 with modified boundary 
conditions } 
TO CLOSE 
 

Remember that as in 2D, REGIONS appearing later in the script will 
overlay and cover up portions of earlier regions in the base plane.  So 
the real extent of REGION 1 is that part of the base plane within the 
perimeter of REGION 1 which is not contained in any later REGION. 
 
 
For an example of how this works, suppose we want to apply a fixed 
temperature "Tcan" to the surface of the canister of our previous 
example.  The canister portion of the domain has three surfaces, the 
bottom, the top, and the sidewall.   
 
The layer dividing SURFACES that define the bottom and top of the 
canister are named 'Can Bottom' and 'Can Top'. The part we want to 
assign is that part of the surfaces which lies above region 2 of the base 
plane.  We therefore put a boundary condition statement inside of the 
region 2 definition, together with a SURFACE qualifier. 
 
The sidewall of the canister is the extrusion of the bounding line of 
REGION 2, restricted to that part contained in the layer named 'Can'.  So 
we add a boundary condition to the bounding curve of REGION 2, with a 
LAYER qualifier. 
 
The modified BOUNDARIES section then looks like this: 
 

BOUNDARIES 
REGION 1 'box' 

START(-1,-1)  
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VALUE(Phi)=0  LINE TO (1,-1) 
NATURAL(Phi)=0 LINE TO (1,1) 
VALUE(Phi)=1  LINE TO (-1,1) 
NATURAL(Phi)=0 LINE TO CLOSE 

REGION 2 'blob' { the embedded blob } 
SURFACE 'Can Bottom' VALUE(Phi)=Tcan 
SURFACE 'Can Top' VALUE(Phi)=Tcan 
{ parameter redefinition in the 'Can' layer only: } 
LAYER 2 k = 0.001 
START 'ring' (R,0)  
{ boundary condition in the 'Can' layer only: } 
LAYER 'Can' VALUE(Phi)=Tcan   
ARC(CENTER=0,0) ANGLE=360 TO CLOSE 
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7.10. Shaped Layer Interfaces 
 
We have stated that the layer interfaces need not be planar.  But 
FlexPDE makes some assumptions about the layer interfaces, which 
places some restrictions on the possible figures. 

 
• Figures must maintain an extruded shape, with sidewalls and layer 

interfaces (the sidewalls cannot grow or shrink) 
 
• Layer interface surfaces must be continuous across region 

boundaries.  If a surface has a vertical jump, it must be divided into 
layers, with a region interface at the jump boundary and a layer 

spanning the jump. (Not this:    but this:    ) 
 
• Layer interface surfaces may merge, but may not invert.  Use a MAX 

or MIN function in the surface definition to block inversion. 
 

Using these rules, we can convert the canister of our example into a 
sphere by placing spherical caps on the cylinder.   
 
The equation of a spherical end cap is  
 

Z = Zcenter + sqrt( R^2 – x^2 – y^2) 
Or, 

Z = Ztop – R + sqrt(R^2 – x^2 – y^2) 
 
• To avoid grazing contact of this new sphere with the top and bottom of 

our former box, we will extend the extrusion from –1 to 1. 
• To avoid arithmetic errors, we will prevent negative arguments of the 

sqrt. 
 

Our modified script now looks like this: 
 
 

TITLE 'Heat flow around an Insulating Sphere' 
COORDINATES 

Cartesian3 
VARIABLES 

Phi  { the temperature } 
DEFINITIONS 
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K = 1  { default conductivity } 
R = 0.5 { sphere radius } 
{ shape of hemispherical cap: } 
Zsphere = sqrt(max(R^2-x^2-y^2,0))  

 
EQUATIONS 

Div(-k*grad(phi)) = 0  
 
EXTRUSION 

SURFACE 'Bottom'  z=-1 
LAYER 'underneath' 

SURFACE 'Sphere Bottom'  z = -max(Zsphere,0) 
LAYER 'Can' 

SURFACE 'Sphere Top'  z = max(Zsphere,0) 
LAYER 'above' 

SURFACE 'Top'   z=1 
 
BOUNDARIES 

REGION 1 'box' 
START(-1,-1)  
VALUE(Phi)=0  LINE TO (1,-1) 
NATURAL(Phi)=0 LINE TO (1,1) 
VALUE(Phi)=1  LINE TO (-1,1) 
NATURAL(Phi)=0 LINE TO CLOSE 

LIMITED REGION 2 'blob' { the embedded blob } 
LAYER 2 K = 0.001 
START 'ring' (RSphere,0) ARC(CENTER=0,0) ANGLE=360  
TO CLOSE 

PLOTS 
GRID(y,z) on x=0 
CONTOUR(Phi) on x=0 
VECTOR(-k*grad(Phi)) on x=0 
ELEVATION(Phi) FROM (0,-1,0) to (0,1,0) 

END 
 
Cut-away and cross-section images of the LAYER x REGION 
compartment structure of this layout looks like this: 
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The contour plot looks like this: 
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Notice that because of the symmetry of the 3D figure, this plot looks like 
a rotation of the 2D contour plot in "Putting It All Together". 
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7.11. Integrals in Three Dimensions 
 
In three-dimensional problems, volume integrals may be computed over 
volume compartments selected by region and layer. 
 
• Result = VOL_INTEGRAL(<integrand>) 

Computes the integral of the integrand over the entire domain. 
 
• Result = VOL_INTEGRAL(<integrand>, <region name>) 

Computes the integral of the integrand over all layers of the 
specified region. 

 
• Result = VOL_INTEGRAL(<integrand>, <layer name>) 

Computes the integral of the integrand over all regions of the 
specified layer. 

 
• Result = VOL_INTEGRAL(<integrand>, <region name>, <layer 

name>) 
Computes the integral of the integrand over the compartment 
specified by the region and layer names. 

 
• Result = VOL_INTEGRAL(<integrand>, <region number>, <layer 

number>) 
Computes the integral of the integrand over the compartment 
specified by the region and layer numbers. 

 
 
Surface integrals may be computed over selected surfaces.  From the 
classification of various qualifying names, FlexPDE tries to infer what 
surfaces are implied in a surface integral statement. In the case of non-
planar surfaces, integrals are weighted by the actual surface area. 

 
• Result = SURF_INTEGRAL(<integrand>)  

Computes the integral of the integrand over the outer bounding 
surface of the total domain. 
 

• Result = SURF_INTEGRAL(<integrand>, <surface name> [, 
<layer_name>] )   

Computes the integral of the integrand over all regions of the named 
extrusion surface. If  the optional <layer_name> appears, it will 
dictate the layer in which the computation is performed. 
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• Result = SURF_INTEGRAL(<integrand>, <surface name>, <region 

name> [, <layer_name>] )   
Computes the integral of the integrand over the named extrusion 
surface, restricted to the named region.  If  the optional 
<layer_name> appears, it will dictate the layer in which the 
computation is performed. 
 

• Result = SURF_INTEGRAL(<integrand>, <region name>, <layer 
name>)   

Computes the integral of the integrand over all surfaces of the 
compartment specified by the region and layer names.  Evaluation 
will be made inside the named compartment. 
 

• Result = SURF_INTEGRAL(<integrand>, <boundary name> [, 
<region_name>] )   

Computes the integral of the integrand over all layers of the sidewall 
generated by the extrusion of the named base-plane curve. If the 
optional <region name> argument appears, it controls on which side 
of the surface the integral is evaluated.Portions of the surface that 
do not adjoin the named layer will not be computed. 
 

• Result = SURF_INTEGRAL(<integrand>, <boundary name>, <layer 
name> [, <region_name>] )   

Computes the integral of the integrand over the sidewall generated 
by the extrusion of the named base-plane curve, restricted to the 
named layer.  If the optional <region name> argument appears, it 
controls on which side of the surface the integral is evaluated. 
Portions of the surface that do not adjoin the named layer will not be 
computed. 

 
 

[Note: The example problem "Samples | Misc | 3D_Integrals.pde" 
demonstrates several forms of integral in a three-dimensional 
problem.] 

 
Let us modify our Canister problem to contain a heat source, and 
compare the volume integral of the source with the surface integral of the 
flux, as checks on the accuracy of the solution: 
 

TITLE 'Heat flow from an Insulating Canister' 
COORDINATES 

Cartesian3 
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VARIABLES 
Phi  { the temperature } 

DEFINITIONS 
K = 1 { default conductivity } 
R = 0.5 { blob radius } 
S = 0 

EQUATIONS 
Div(-k*grad(phi)) = S 

EXTRUSION 
SURFACE 'Bottom'  z=-1/2 

LAYER 'underneath' 
SURFACE 'Can Bottom'  z=-1/4 

LAYER 'Can' 
SURFACE 'Can Top'  z=1/4 

LAYER 'above' 
SURFACE 'Top'   z=1/2 

BOUNDARIES 
REGION 1 'box' 

START(-1,-1)  
VALUE(Phi)=0  LINE TO (1,-1) 
NATURAL(Phi)=0 LINE TO (1,1) 
VALUE(Phi)=1  LINE TO (-1,1) 
NATURAL(Phi)=0 LINE TO CLOSE 

REGION 2 'blob' { option: could be LIMITED } 
LAYER 2 k = 0.001 { the canister only } 
S = 1   { still the canister } 
START 'ring' (R,0)  
ARC(CENTER=0,0) ANGLE=360 TO CLOSE 

PLOTS 
GRID(y,z) on x=0 
CONTOUR(Phi) on x=0 
VECTOR(-k*grad(Phi)) on x=0 
ELEVATION(Phi) FROM (0,-1,0) to (0,1,0) 
 

SUMMARY 
REPORT(Vol_Integral(S,'blob','can')) AS 'Source Integral' 
REPORT(Surf_Integral(NORMAL(-k*grad(Phi),'blob','can')))  

AS 'Can Heat Loss' 
REPORT(Surf_Integral(NORMAL(-k*grad(Phi)))) 

AS 'Box Heat Loss' 
REPORT(Vol_Integral(S,'blob','can')-Surf_Integral(NORMAL(-
k*grad(Phi)))) 

AS 'Energy Error' 
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END 
 
The contour plot is as follows: 
 

 
 
The summary page shows the integral reports: 
 

 
[Note: The "Integral" reported at the bottom of the contour plot is the 
default Area_Integral(Phi) reported by the plot procedure.] 
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7.12. More Advanced Plot Controls 
 
We have discussed the specification of plots on cut planes in 3D.  You 
can, if you want, apply restrictions to the range of such plots, much like 
the restrictions of integrals. 
 
You can also specify plots on extrusion SURFACES (layer interface 
surfaces), even though these surfaces may not be planar. 
 
The basic control mechanism for plots is the ON <thing> statement. 
 
For example, the statement 

 
CONTOUR(Phi) ON 'Sphere Top' ON 'Blob' 

 
requests a contour plot of the potential Phi on the extrusion surface 
named 'Sphere Top', restricted to the region 'Blob'. 
 

CONTOUR(NORMAL(-K*GRAD(Phi))) ON 'Sphere Top' ON 'Blob' 
ON 'Can' 

 
requests a contour plot of the normal component of the heat flux on the 
top part of the sphere, with evaluation to be made within layer 'Can', i.e., 
inside the sphere. 
 
• In general, the qualifier ON <name>  will request a localization of the 

plot, depending on the type of object names by <name>. 
•  
• The qualifier ON REGION <number>  selects a region by number, 

rather than by name. 
•  
• The qualifier ON SURFACE <number>  selects a layer interface 

surface by number, rather than by name. 
•  
• The qualifier ON LAYER <number>  selects a layer by number, rather 

than by name. 
 
As an example, let us request a plot of the heat flux on the top of the 
sphere, as shown above.  We will add this command to the PLOTS 
section, and also request an integral over the same surface, as a cross 
check.  The plot generator will automatically compute the integral over 
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the plot grid. This computation should give the same result as the 
SURF_INTEGRAL, which uses a quadrature on the computation mesh.   
 

CONTOUR(NORMAL(-K*GRAD(Phi))) ON 'Sphere Top' ON 'Blob' 
ON 'Can' 
REPORT(surf_integral(NORMAL(-k*GRAD(Phi)),'Sphere 
Top','Blob','Can')) AS 'Surface Flux' 

 
The result looks like this: 
 

 
 

Since in this case the integral is a cancellation of values as large as 7e-
4, the reported value 9.6e-8 is well within the default error target of 
ERRLIM=0.001.  The plot grid integral, "Surf_Integral", shows greater 
error at 8.96e-6, due to poorer resolution of integrating the area-weighted 
function in the plot plane. 
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8. Moving Meshes 
 
FlexPDE supports methods for moving the domain boundaries and 
computation mesh during the course of a problem run. 
 
The mechanisms for specifying this capability are simple extensions of 
the existing script language. There are three parts to the definition of a 
moving mesh: 
 
• Declare a surrogate variable for each coordinate you wish to move: 

VARIABLES 
Xm = MOVE(x) 

• Write equations for the surrogate variables:  
EQUATIONS 

dt(xm) = umesh 
• Write boundary conditions for the surrogate variables:  

BOUNDARIES 
START (0,0) VELOCITY(xm) = umesh 

 
The specification of ordinary equations is unaffected by the motion of the 
boundaries or mesh.  EQUATIONS are always presented in Eulerian 
(Laboratory) form.  FlexPDE symbolically applies motion correction terms 
to the equations.  The result of this approach is an Arbitrary 
Lagrange/Eulerian (ALE) model, in which user has the choice of mesh 
velocities: 
 
• Locking the mesh velocity to a fluid velocity results in a Lagrangian 

model. (FlexPDE has no mechanism for reconnecting twisted meshes, 
so this model is discouraged in cases of violent motion). 

• Specifying a mesh velocity different from the fluid velocity preserves 
mesh integrity while still allowing deformation of the bounding surfaces 
or following bulk motion of a fluid. 

• If no mesh motion is specified, the result is an Eulerian model, which 
has been the default in previous versions of FlexPDE. 
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8.1. Mesh Balancing 
 
A convenient method for distributing the computation mesh smoothly 
within a moving domain boundary is simply to diffuse the mesh velocity. 
 
For example, suppose we change our basic example problem to model a 
sphere of oscillating size Rm=0.5 + 0.25*sin(t). 
 
We will define surrogate coordinates for X and Y and mesh velocity 
variables: 

VARIABLES  
Phi 
Xm = MOVE(x) 
Ym = MOVE(y) 
Um  
Vm 

 
The EQUATIONS for the mesh coordinates are simply the velocity 
relations: 

dt(Xm) = Um 
dt(Ym) = Vm 
 

For the mesh velocities we will use a diffusion equation to distribute the 
velocities smoothly in the interior: 

div(grad(Um)) = 0 
div(grad(Vm)) = 0 

 
The boundary condtions for mesh velocity on the blob are simply the 
geometric rules 

VALUE(Um) = 0.25*cos(t)*x/r 
VALUE(Vm) = 0.25*cos(t)*y/r 

 
Since the finite element equations applied at the boundary nodes are 
averages over the cells, we must also apply the hard equivalence of 
velocity to the mesh coordinates on the blob boundary 

VELOCITY(Xm) = Um 
VELOCITY(Ym) = Vm 
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8.2. The Pulsating Blob 
 
The modified script for our example problem is now: 
 

TITLE 'Heat flow around an Insulating blob' 
VARIABLES 

Phi  { the temperature } 
Xm = MOVE(x) { surrogate X } 
Ym = MOVE(y) { surrogate Y }  
Um  { mesh x-velocity } 
Vm  { mesh y-velocity } 
 

DEFINITIONS 
K = 1  { default conductivity } 
R0 = 0.5  { initial blob radius } 
 

EQUATIONS 
Phi: Div(-k*grad(phi)) = 0 
Xm: dt(Xm) = Um 
Ym: dt(Ym) = Vm 
Um: div(grad(Um)) = 0 
Vm: div(grad(Vm)) = 0 
 

BOUNDARIES 
REGION 1 'box' 

START(-1,-1)  
VALUE(Phi)=0  
VELOCITY(Xm)=0 VELOCITY(Ym)=0 
VALUE(Um)=0 VALUE(Vm)=0 

LINE TO (1,-1) 
NATURAL(Phi)=0  

LINE TO (1,1) 
VALUE(Phi)=1  

LINE TO (-1,1) 
NATURAL(Phi)=0 

LINE TO CLOSE 
REGION 2 'blob' { the embedded blob } 

k = 0.001 
START 'ring' (R,0)  
VELOCITY(Xm) = Um 
VELOCITY(Ym) = Vm 
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VALUE(Um) = 0.25*cos(t)*x/r 
VALUE(Vm) = 0.25*cos(t)*y/r 

ARC(CENTER=0,0) ANGLE=360 TO CLOSE 
PLOTS 

TIME 0 TO 2*pi 
PLOTS 

FOR T = pi/2 BY pi/2 TO 2*pi 
CONTOUR(Phi) 
VECTOR(-k*grad(Phi)) 
ELEVATION(Phi) FROM (0,-1) to (0,1) 
ELEVATION(Normal(-k*grad(Phi))) ON 'ring' 

END 
 

The extremes of motion of this problem are shown below.  See Help 
system or online documentation for an animation. 
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9. Controlling Mesh Density 
 
There are several mechanisms available for controlling the cell density in 
the mesh created by FlexPDE. 
 
Implicit Density 
 
The cell density of the created mesh will follow the spacing of points in 
the bounding segments.  A very small segment in the boundary will 
cause a region of small cells in the vicinity of the segment. 
 
Maximum Density 
 
The global command 
 

SELECT NGRID = <number>    
 
controls the maximum cell size.  The mesh will be generated with 
approximately NGRID cells in the largest dimension, and corresponding 
size in the smaller dimension, subject to smaller size requirements from 
other criteria.   
 
Explicit Density Control 
 
Cell density in the initial mesh may be controlled with the parameters 
MESH_SPACING and MESH_DENSITY.  MESH_SPACING controls the 
maximum cell dimension, while MESH_DENSITY is its inverse, 
controlling the minimum number of cells per unit distance.  The mesh 
generator examines many competing effects controlling cell size, and 
accepts the smallest of these effects as the size of a cell.  The 
MESH_SPACING and MESH_DENSITY controls therefore have effect 
only if they are the smallest of the competing influences, and a large 
spacing request is effectively ignored. 
 
The MESH_SPACING and MESH_DENSITY controls can be used with 
the syntax of either defined parameters or boundary conditions. 
 
Used as defined parameters, these controls may appear in the 
DEFINITONS section or may be redefined in subsequent regional 
redefinition sections.  In this use, the controls specify the volume or area 
mesh density over a region or over the entire domain. 
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For controlling the cell density along boundary segments, the controls 
MESH_SPACING and MESH_DENSITY may be used with the syntax of 
boundary conditions, and may appear wherever a boundary condition 
statement may appear.  In this usage, the controls specify the cell 
spacing on the boundary curve or surface. 
 
The value assigned to MESH_SPACING or MESH_DENSITY controls 
may be functions of spatial coordinate.  In the example of the chapter 
"Generating a Mesh", we could write: 
 

REGION 2 'blob'  { the embedded 'blob' } 
MESH_DENSITY = 50*EXP(-50*(x^2+y^2)) 
START(1/2,0)  
ARC(CENTER=0,0) ANGLE=360 

 
This results in the following initial mesh: 
 

 
 
See also the example problems "Samples | Misc | Mesh_Control | 
Mesh_Spacing.pde" and "Samples | Misc | Mesh_Control | 
Mesh_Density.pde". 
 
 
 
Adaptive Refinement 
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Once the initial mesh is constructed, FlexPDE will continue to estimate 
the solution error, and will refine the mesh as necessary to meet the 
target accuracy.  In time dependent problems, an adaptive refinement 
process will also be applied to the initial values of the variables, to refine 
the mesh where the variables undergo rapid change.  Whereas cells 
created by this adaptive refinement  process can later be re-merged, 
cells created by the initial explicit density controls are permanent, and 
cannot be un-refined. 
 

[Note: The adaptive refinement process relies on evaluation of the 
various sources and derivatives at discrete points within the existing 
mesh.  Sources or other effects which are of extremely small extent, 
such as thin bands or point-like functions, may not be   discernible in 
this discrete model.  Any effects of small extent should be brought to 
the attention of the gridder by explicitly placing gridding features at 
these locations.  Use REGIONS or FEATURES wherever something 
interesting is known to take place in the problem. ] 

 
 
See also the FRONT and RESOLVE statements for additional controls. 
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10. Exporting Data to Other 
Applications 
 
FlexPDE supports several mechanisms for exporting data to other 
applications or visualization software.   
 
The EXPORT Qualifier 
 
The simplest method is to append the modifier "EXPORT" (or "PRINT") 
to a plot command.  In this case, the plot data will be written to a text file 
in a predefined format suitable for importing to another FlexPDE problem 
using the TABLE input function.  For ELEVATIONS or HISTORIES, the 
output will consist of a list of the times or X-, Y- or Z- coordinates of the 
data followed by a list of the data values (see the discription of the 
TABLE input function).  For 2D plots, a regular rectangular grid will be 
constructed, and the data written in TABLE input format. 
 
The FORMAT String 
 
The format of the text file created by the EXPORT modifier may be 
controlled by the inclusion of the modifier FORMAT "string".   
 
If this modifier appears together with the EXPORT or PRINT modifier, 
then the file will contain one text line for each data point in the grid.  The 
contents of the line will be exactly that specified by the <string>.   
 
• All characters except "#" will be copied literally into the output line. 
• "#" will be interpreted as an escape character, and various options will 

be selected by the character following the "#":  #x, #y, #z and #t will 
print the value of the spatial coordinates or time of the data point;   

• #1 through #9 will print the value of the corresponding element of the 
plot function list;  

• #b will write a taB character;   
• #r will cause the remainder of the format string to be repeated for each 

plot function in the plot list;   
• #i inside a repeated string will print the value of the current element of 

the plot function list.   
See the example problems "export_format" and "export_history". 
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In all cases of FORMATTED export, a header will be written containing 
descriptive information about the origin of the file.  This header will be 
delimited by "{" and "}".  In 2D grids, table points which are outside the 
problem domain will also be bracketed by "{" and "}" and marked as 
"exterior".  If these commenting forms are unacceptable to the importing 
application, then the data files must be manually edited before import. 
 
 
TABLE Output 
 
The TABLE plot command may also be used to generate tabular export.  
This command is identical to a CONTOUR command with an EXPORT 
qualifier, except that no graphical output is generated.  The FORMAT 
"string" qualifier may also be used with TABLE output. 
 
 
Transferring Data to another FlexPDE problem 
 
FlexPDE supports the capability of direct transfer of data defined on the 
Finite Element mesh.  The TRANSFER output function writes the current 
mesh structure and the requested data values to an ASCII text file.  
Another FlexPDE problem can read this file with the TRANSFER input 
function.  The transferred data will be interpolated on the output mesh 
with the Finite Element basis of the creating problem.  The TRANSFER 
input mesh need not be the same as the computation mesh, as long as it 
spans the necessary area. 
 
The data format of the TRANSFER file is similar to the TECPLOT file 
described below.  The TRANSFER file, however, maintains the quadratic 
or cubic basis of the computation, while the TECPLOT format is 
converted to linear basis.  Since this is an ASCII text file, it can also be 
used for data transfer to user-written applications.  The format of the 
TRANSFER file is described in the Problem Descriptor Reference 
chapter "Transfer File Format" 
 
 
Output to Visualization Software 
 
FlexPDE can export solution data to third-party visualization software.  
Data export is requested by what is syntactically a PLOT command, with 
the type of plot (such as CONTOUR) replaced by the format selector.  
Two formats are currently supported, CDF and TECPLOT.   
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CDF 
 
CDF(arg1 [,arg2,…] )  selects output in netCDF version 3 format.  CDF 
stands for "common data format", and is supported by several software 
products including SlicerDicer (www.visualogic.com ).  Information about 
CDF, including a list of software packages supporting it, can be viewed 
at the website www.unidata.ucar.edu/packages/netcdf . 
 
CDF data are constrained to be on a regular rectangular mesh, but in the 
case of irregular domains, parts of the rectangle can be absent.  This 
regularity implies some loss of definition of material interfaces, so 
consider using a ZOOMed domain to resolve small features.   
 
The CDF "plot" statement can be qualified by ZOOM or  "ON SURFACE" 
modifiers, and its density can be controlled by the POINTS modifier.  For 
global control of the grid size, use the statement "SELECT CDFGRID=n", 
which sets all dimensions to n.  The default gridsize is 50. 
 
Any number of arguments can be given, and all will be exported in the 
same file.  The output file is by default "<problem>_<sequence>.cdf", but 
specific filenames can be selected with the FILE modifier. 
 
 
TECPLOT 
 
TECPLOT(arg1 [,arg2,…] ) selects output in TecPlot format.  TecPlot is 
a visualization package which supports finite element data format, and 
so preserves the material interfaces as defined in FlexPDE.  No ZOOM 
or POINTS control can be imposed.  The full computation mesh is 
exported, grouped by material number.  TecPlot can selectively enable 
or disable these groups.  Any number of arguments can be given, and all 
will be exported in the same file.  The output file is by default 
"<problem>_<sequence>.dat", but specific filenames can be selected 
with the FILE modifier. 
 
Information about TecPlot can be viewed at www.amtec.com . 
 
VTK 
 
VTK(arg1 [,arg2,…] ) selects output in Visual Tool Kit format.  VTK is a 
freely available library of visualization software, which is beginning to be 
used as the basis of many visualization packages.  The file format can 
also be read by some visualization packages that are not based on VTK, 
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such as VisIt (www.llnl.gov/visit).  The format preserves the mesh 
structure of the finite element method, and so preserves the material 
interfaces as defined in FlexPDE.  No ZOOM or POINTS control can be 
imposed.  The full computation mesh is exported.  Particular 
characteristics of the visualization system are outside the control of 
FlexPE.  Any number of arguments can be given, and all will be exported 
in the same file.  The output file is by default 
"<problem>_<sequence>.vtk", but specific filenames can be selected 
with the FILE modifier. 
 
The VTK format supports quadratic finite element basis directly, but not 
cubic.  To export from cubic-basis computations, use VTKLIN. 
 
VTKLIN(arg1 [,arg2,…] ) produces a VTK format file in which the native 
cells of the FlexPDE computation have been converted to a set of linear-
basis finite element cells.   
 
Information about VTK can be viewed at public.kitware.com/VTK/. 
 
 
Examples: 
Samples | Misc | Import-Export | Export.pde 
Samples | Misc | Import-Export | Export_Format.pde 
Samples | Misc | Import-Export | Export_History.pde 
Samples | Misc | Import-Export | Transfer_Out.pde 
Samples | Misc | Import-Export | Transfer_In.pde 
Samples | Misc | Import-Export | Table.pde 
 

  

 
Note:  
Reference to products from other suppliers does not constitute an 
endorsement by PDE Solutions Inc. 
 

 
 

 

 
 

112

 

11. Solving Nonlinear Problems 
 
  
FlexPDE automatically recognizes when a problem is nonlinear and 
modifies its strategy accordingly.  The solution method used by FlexPDE 
is a modified Newton-Raphson iteration procedure.  This is a "descent" 
method, which tries to fall down the gradient of an energy functional until 
minimum energy is achieved (i.e. the gradient of the functional goes to 
zero). If  the functional is nearly quadratic, as it is in simple diffusion 
problems, then the method converges quadratically (the relative error is 
squared on each iteration).  The default strategy implemented in 
FlexPDE is frequently sufficient to determine a solution without user 
intervention.  But in cases of strong nonlinearities, it may be necessary 
for the user to help guide FlexPDE to a valid solution.  There are several 
techniques that can be used to help the solution process. 
 
 
Time-Dependent Problems 
 
In nonlinear time-dependent problems, the default behavior is to take a 
single Newton step at each timestep, on the assumption that any 
nonlinearities will be sensed by the timestep controller, and that timestep 
adjustments will guarantee an accurate evolution of the system from the 
given initial conditions. In this mode, the derivatives of the solution with 
respect to the variables is computed once at the beginning of the 
timestep, and are not updated. 
 
Several selectors are provided to enable more robust (but more 
expensive) treatment in difficult cases.  The primary selector 
PREFER_STABILITY allows up to three Newton iterations in each 
timestep, with derivatives recomputed at each iteration.  It also modifies 
the error weighting scheme to place more emphasis on very localized 
activity.  PREFER_STABILITY resets the values of the NRUPDATE and 
TNORM.   
 
Steady-State Problems 
 
In the case of nonlinear steady-state problems, the situation is somewhat 
more complicated.  We are not guaranteed that the system will have a 
unique solution, and even if it does, we are not guaranteed that FlexPDE 
will be able to find it.   
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Start with a Good Initial Value 
Providing an initial value which is near the correct solution will aid 
enormously in finding a solution.  Be particularly careful that the initial 
value matches the boundary conditions.  If it does not, serious 
excursions may be excited in the trial solution, leading to solution 
difficulties. 
 
Use STAGES to Gradually Activate the Nonlinear Terms 
You can use the staging facility of FlexPDE to gradually increase the 
strength of the nonlinear terms.  Start with a nearly linear system, and 
allow FlexPDE to find a solution which is consistent with the boundary 
conditions.  Then use this solution as a starting point for a more strongly 
nonlinear system.  By judicious use of staging, you can creep up on a 
solution to very nasty problems. 
 
Use artificial diffusion to stabilize solutions 
Gibbs phenomena are observed in signal processing when a 
discontinuous signal is reconstructed from its Fourier components. The 
charactistics of this phenomenon is ringing, with overshoots and 
undershoots in the recovered signal. Similar phenomena can be 
observed in finite element models when a sharp transition is modeled 
with an insufficient density of mesh cells.  In signal processing, the signal 
can be smoothed by use of a "window function".  This is essentially a 
low-pass filter that removes the high frequency components of the signal.  
In partial differential equations, the diffusion operator Div(grad(u)) is a 
low-pass filter that can be used to smooth oscillations in the solution.  
See the Technical Note "Smoothing Operators in PDE's" for technical 
discussion of this operator.  In brief, you can use a term 
eps*Div(Grad(u)) in a PDE to smooth oscillations of spatial extent D by 
setting eps=D^2/pi^2 in steady state or eps=2*D*c/pi in time dependence 
(where c is the signal propagation velocity).  The term should also be 
scaled as necessary to provide dimensional consistency with the rest of 
the terms of the equation. Use of such a term merely limits the spatial 
frequency components of the solution to those which can be adequately 
resolved by the finite element mesh. 
 
Use CHANGELIM to Control Modifications 
The selector CHANGELIM limits the amount by which any nodal value in 
a problem may be modified on each Newton-Raphson step.  As in a one-
dimensional Newton iteration, if the trial solution is near a local maximum 
of the functional, then shooting down the gradient will try to step an 
enormous distance to the next trial solution.  FlexPDE limits the size of 
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each nodal change to be less than CHANGELIM times the average value 
of the variable.  The default value for CHANGELIM is 0.5, but if the initial 
value (or any intermediate trial solution) is sufficiently far from the true 
solution, this value may allow wild excursions from which FlexPDE is 
unable to recover.  Try cutting CHANGELIM to 0.1, or in severe cases 
even 0.01, to force FlexPDE to creep toward a valid solution.  In 
combination with a reasonable initial value, even CHANGELIM=0.01 can 
converge in a surprisingly short time.  Since CHANGELIM multiplies the 
RMS average value, not each local value, its effect disappears when a 
solution is reached, and quadratic final convergence is still achieved. 
 
Watch Out for Negative Values 
FlexPDE uses piecewise polynomials to approximate the solution.  In 
cases of rapid variation of the solution over a single cell, you will almost 
certainly see severe under-shoot in early stages.  If you are assuming 
that the value of your variable will remain positive, don't.  If your 
equations lose validity in the presence of negative values, perhaps you 
should recast the equations in terms of the logarithm of the variable.  In 
this case, even though the logarithm may go negative, the implied value 
of your actual variable will remain positive. 
 
Recast the Problem in a Time-Dependent Form 
Any steady-state problem can be viewed as the infinite-time limit of a 
time-dependent problem.  Rewrite your PDE's to have a time derivative 
term which will push the value in the direction of decreasing deviation 
from solution of the steady-state PDE.  (A good model to follow is the 
time-dependent diffusion equation DIV(K*GRAD(U)) = DT(U).  A 
negative value of the divergence indicates a local maximum in the 
solution, and results in driving the value downward.)  In this case, "time" 
is a fictitious variable analogous to the "iteration count" in the steady-
state N-R iteration, but the time-dependent formulation allows the 
timestep controller to guide the evolution of the solution. 
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12. Getting Help 
 
We're here to help. 
 
Of course, we would rather answer questions about how to use FlexPDE 
than about how to do the mathematical formulation of your problem. 
 
FlexPDE is applicable to a wide range of problems, and we cannot be 
experts in all of them. 
 
If you have what appears to be a malfunction of FlexPDE, or if it is doing 
something you don't understand or seems wrong,  
• Send us an Email describing the problem.   
• Attach a descriptor file that demonstrates the difficulty, and explain 

clearly what you think is wrong.  
• The more concise you can make your question, the more promptly we 

will be able to answer.   
• Tell us what version of FlexPDE you are using; your problem may 

have been solved in a later release. 
 
Send your enquiry to support@pdesolutions.com and we will answer 
as soon as we can, usually within a day or two. 
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