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Introduction  
 
FlexPDE 
FlexPDE is a software tool for finding numerical solutions to systems of 
linear or non-linear partial differential equations using the methods of 
finite element analysis.  The systems may represent static boundary 
value, time dependent initial/boundary value, or eigenvalue problems.  
Rather than addressing the solution of specific equations related to a 
given area of application, FlexPDE provides a framework for treating 
partial differential equation systems in general.  It gives users a 
straightforward method of defining the equations, domains and 
boundary conditions appropriate to their application.  From this 
description it creates a finite element solution process tailored to the 
problem.  Within quite broad limits, then, FlexPDE is able to construct a 
numerical solution to a wide range of applications, without itself having 
any built-in knowledge of any of them. 

The goal of this book is not to provide a discussion of the specific 
grammatical rules of writing scripts for FlexPDE, nor to describe the 
operation of the graphical user interface.  Those topics are covered in 
other volumes of the FlexPDE documentation, the Getting Started 
guide, the User Guide tutorial, and the Problem Descriptor Reference. 

In this book we will address several fields of physics in which FlexPDE 
finds fruitful application, describing the various problems, the 
mathematical statement of the partial differential equation system, and 
the ultimate posing of the problem to FlexPDE.  The volume is 
accompanied by the text of all the examples, which the user can submit 
to FlexPDE to see the solution in progress or use as a foundation for 
problems of his own. 

This manual is emphatically not a compendium of the problems 
FlexPDE “knows how to solve”.  It is rather a group of examples 
showing ways in which the power of FlexPDE can be applied to partial 
differential equations systems in many fields.  The true range of 
applicability of FlexPDE can be demonstrated only by the full range of 
ingenuity of users with insight into the mathematics of their own special 
fields. 

Nor does this manual attempt to present textbook coverage of the 
theory of the topics addressed.  The range of applications addressable 
by FlexPDE would make such an attempt impossible, even if we were 
capable of such an endeavor.  Instead, we have presented enough of 
the theory of each topic to allow those practitioners who are familiar 
with the subject to see how the material has been analyzed and 
presented to FlexPDE.  Users who are unfamiliar with the various fields 
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of application should consult standard textbooks to find the full 
theoretical development of the subjects. 

 
Finite Element Methods 
It is not our intent to provide an elaborate discussion of finite element 
methods.  One goal of FlexPDE has been to allow users in the various 
fields of science and engineering to begin reaping the benefits of 
applying finite element analysis to their individual work without 
becoming programmers and numerical analysts.  There are hundreds 
of books in print detailing the method and its variants in many fields, 
and the interested student can find a wealth of material to keep him 
busy.  If we have been successful in our endeavors, he won’t have to. 

Nevertheless, a familiarity with some of the concepts of finite element 
analysis can be of benefit in understanding how FlexPDE works, and 
why it sometimes doesn’t.  Hence this brief overview. 

 
Principles 
Partial differential equations generally arise as a mathematical 
expression of some conservation principle such as a conservation of 
energy, momentum or mass.  Partial differential equations by their very 
nature deal with continuous functions  -- a derivative is the result of the 
limiting process of observing differences at an infinitesimal scale.  A 
temperature distribution in a material, for example, is assumed to vary 
smoothly between one extreme and another, so that as we look ever 
more closely at the differences between neighboring points, the values 
become ever closer until at “zero” separation, they are the same. 

Computers, on the other hand, apply arithmetic operations to discrete 
numbers, of which only a limited number can be stored or processed in 
finite time.  A computer cannot analyze an infinitude of values.  How 
then can we use a computer to solve a real problem? 

Many approaches have been devised for using computers to 
approximate the behavior of real systems. The finite element method is 
one of them.  It has achieved considerable success in its few decades 
of existence, first in structural mechanics, and later in other fields.  Part 
of its success lies in the fact that it approaches the analysis in the 
framework of integrals over small patches of the total domain, thus 
enforcing aggregate correctness even in the presence of microscopic 
error.  The techniques applied are little dependent on shapes of 
objects, and are therefore applicable in real problems of complex 
configuration. 

The fundamental assumption is that no matter what the shape of a 
solution might be over the entire domain of a problem, at some scale 
each local patch of the solution can be well approximated by a low-

order polynomial.  This is closely related to the well-known Taylor 
series expansion, which expresses the local behavior of a function in a 
few polynomial terms. 
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In a two-dimensional heat flow problem, for example, we assume that if 
we divide the domain up into a large number of triangular patches, then 
in each patch the temperature can be well represented by, let us say, 
paraboloidal surfaces.  Stitching the patches together, we get a 
Harlequin surface that obeys the differential limiting assumption of 
continuity for the solution value—but perhaps not for its derivatives.  
The patchwork of triangles is referred to as the computation “mesh”, 
and the sample points at vertices or elsewhere are referred to as the 
“nodes” of the mesh. 

In three dimensions, the process is analogous, using a tetrahedral 
subdivision of the domain. 

How do we determine the shape of the approximating patches?   
1. Assign a sample value to each vertex of the triangular or 

tetrahedral subdivision of the domain.  Then each vertex value is 
shared by several triangles (tetrahedra).   

2. Substitute the approximating functions into the partial differential 
equation.   

3. Multiply the result by an importance-weighting function and 
integrate over the triangles surrounding each vertex.  

4. Solve for the vertex values which minimize the error in each 
integral.  

  
This process, known as a “weighted residual” method, effectively 
converts the continuous PDE problem into a discrete minimization 
problem on the vertex values.  This is usually known as a “weak form” 
of the equation, because it does not strictly enforce the PDE at all 
points of the domain, but is instead correct in an integral sense relative 
to the triangular subdivision of the domain. 

The locations and number of sample values is different for different 
interpolation systems.  In FlexPDE, we use either quadratic 
interpolation (with sample values at vertices and midsides of the 
triangular cells), or cubic interpolation (with values at vertices and two 
points along each side).  Other configurations are possible, which gives 
rise to various “flavors” of finite element methods. 

 
Boundary Conditions 
A fundamental component of any partial differential equation system is 
the set of boundary conditions, which alone make the solution unique.  
The boundary conditions are analogous to the integration constants 



that arise in integral calculus.  We say , where  is 

any constant.  If we differentiate the right hand side, we recover the 
integrand, regardless of the value of C. 
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In a similar way, to solve the equation , we must integrate 

twice.  The first integration gives , and the second 

gives 2 .  These integration constants must be supplied by the 
boundary conditions of the problem statement. 
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It is clear from this example that there are as many integration 
constants as there are nested differentiations in the PDE.  In the 
general case, these constants can be provided by a value at each end 
of an interval, a value and a derivative at one end, etc.  In practice, the 
most common usage is to provide either a value or a derivative at each 
end of the domain interval.  In two or three dimensions, a value or 
derivative condition applied over the entire bounding curve or surface 
provides one condition at each end of any coordinate integration path. 

 
Integration by Parts  
and Natural Boundary Conditions 
 
A fundamental technique applied by FlexPDE in treating the finite 
element equations is “integration by parts”, which reduces the order of 
a derivative integrand, and also leads immediately to a formulation of 
derivative boundary conditions for the PDE system.  

In its usual form, integration by parts is given as 

 

( )
bb b

a aa
udv uv vdu= −∫ ∫

ˆ
A l

. 

 
Application of integration by parts to a vector divergence in a two- or 
three-dimensional domain, for example, results in the Divergence 
Theorem, given in 2D as 

 

F dA F n dl∇ =∫∫ ∫
G G
i iv
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n
This equation relates the integral inside the area to the flux crossing the 
outer boundary ( ˆ referring to the outward surface-normal unit vector). 

As we shall see, the use of integration by parts has a wide impact on 
the way FlexPDE interprets and solves PDE systems. 

Applied to the weighted residual method, this process dictates the flux 
conservation characteristics of the finite element approximation at 
boundaries between the triangular approximation cells, and also 
provides a method for defining the interaction of the system with the 
outside world, by specifying the value of the surface integrand. 

The values of the surface integrands are the “Natural” boundary 
conditions of the PDE system, a term which also arises in a similar 
context in variational calculus. 

FlexPDE uses the term “Natural” boundary condition to specify the 
boundary flux terms arising from the integration by parts of all second-
order terms in the PDE system. 

For example, in a heat equation, , the divergence 
term will be integrated by parts, resulting in  

( ) 0k Sϕ∇ − ∇ + =i

( ) ( ) ˆ
A l

k kdA n dlϕ ϕ− ∇ − ∇∇ =∫∫ ∫i i(0.1)     v  

The right hand side is the heat flux crossing the outer boundary, and 
the value of k ϕ− ∇  must be provided by the user in a Natural 
boundary condition statement (unless a value BC is applied instead). 

At an interface between two materials, 1n  represents the 
heat energy leaving material 1 at a point on the interface.  Likewise, 

( ) 2n  represents the heat energy leaving material 2 at the 
same point.  Since the outward normal from material 1 is the negative 
of the outward normal from material 2, the sum of the fluxes at the 
boundary is ( ) ( ) 11

ˆk k nϕ ϕ2 12
 ∇ − ∇ , and this becomes the Natural 

boundary condition at the interface.  In this application, we want energy 
to be conserved, so that the two flux terms must sum to zero.  Thus the 
internal Natural BC is zero at the interface, and this is the default value 
applied by FlexPDE. 

( )1 1
ˆk ϕ− ∇ i

2 2
ˆk ϕ− ∇ i

 i

 

Useful Integral Rules . 
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(0.2)     ( )
V S
fdV nf dS∇ =∫∫∫ ∫∫

G

( )
V S

FdV n F dS∇ =∫∫∫ ∫∫
GGi w

     (Gradient Theorem) 

(0.3)     i    (Divergence Theorem) 

(0.4)     ( )( )
V S V

FdV n F dS FdVϕ ϕ ϕ∇ = − ∇∫∫∫ ∫∫ ∫∫∫
Gi i iw

( )
V S

FdV n F dS∇× = ×∫∫∫ ∫∫
G GGw

G G
 

(0.5)       (Curl Theorem) 

 
 
 

 
Adaptive Mesh Refinement 
We have said that at “some scale“, the solution can be adequately 
approximated by a set of low-order polynomials.  But it is not always 
obvious where the mesh must be dense and where a coarse mesh will 
suffice.  In order to address this issue, FlexPDE uses a method of 
“adaptive mesh refinement“.  The problem domain presented by the 
user is divided into a triangular mesh dictated by the feature sizes of 
the domain and the input controls provided by the user.  The problem is 
then constructed and solved, and the cell integrals of the weighted 
residual method are crosschecked to estimate their accuracy.  In 
locations where the integrals are deemed to be of questionable 
accuracy, the triangles are subdivided to give a new denser mesh, and 
the problem is solved again.  This process continues until FlexPDE is 
satisfied that the approximation is locally accurate to the tolerance 
assigned by the user.  Acceptable local accuracy does not necessarily 
guarantee absolute accuracy, however.  Depending on how errors 
accumulate or cancel, the global accuracy could be better or worse 
than the local accuracy condition implies. 

 
Time Integration  
The finite element method described above is most successful in 
treating boundary value problems.  When addressing initial value 
problems, while the finite element method could be applied (and 
sometimes is), other techniques are frequently preferable.  FlexPDE 
uses a variable-order implicit backward difference method (BDM) as 
introduced by C.W. Gear.  In most cases, second order gives the best 
tradeoff between stability, smoothness and speed, and this is the 
default configuration for FlexPDE.  This method fits a quadratic in time 
to each nodal value, using two known values and one future (unknown) 
value.  It then solves the coupled equations for the array of nodal 
values at the new time.  By looking backward one additional step, it is 
possible to infer the size of the cubic term in a four-point expansion of 
the time behavior of each nodal value.  If these cubic contributions are 

large, the timestep is reduced, and if extreme, the current step 
repeated. 
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Summary 
With this very cursory examination of finite element methods, we are 
ready to start applying FlexPDE to the solution of PDE systems of 
interest in real scientific and engineering work. 

 
Disclaimer 
We have tried to make these notes as accurate as possible, but 
because we are not experts in all the fields addressed, it is possible 
that errors have crept in.  We invite readers to comment freely on the 
material presented here, and to take us to task if we have erred. 



 In a FlexPDE script, the equation (1.1) is represented simply as 
 

Chapter 1 
Electrostatics 
 
Perhaps the most important of all partial differential equations is the 
simple form  

 
(1.1)     ( )k q 0ϕ∇ ∇ + =i
 
It is encountered in virtually all branches of science and engineering, 
and describes the diffusion of a quantity ϕ with diffusivity k and volume 
source q.  With k=1 it is referred to as Poisson’s equation, 
2 0qϕ∇ + = .  With k=1 and q=0, it is referred to as Laplace’s 

equation, . 2 0ϕ∇ =
 
If ϕ  is electric potential, k is permittivity and q is charge density, then 
(1.1)is the electrostatic field equation. 
 
If ϕ  is temperature, k is thermal conductivity and q is heat source, then 
(1.1) is the heat equation. 
 
If we identify derivatives of ϕ  with fluid velocities,  

ϕ∂ ϕ∂
     ,                                                         u

x
=

∂
v

y
=

∂

k

then (1.1) is the potential flow equation. 
 
In most cases, we can identify  with the flux of some quantity 
such as heat, mass or a chemical. (1.1) then says that the variation of 
the rate of transfer of the relevant quantity is equal to the local source 
(or sink) of the quantity. 

ϕ− ∇

( ) ( )
V S V

k dV n k dS qdVϕ ϕ∇ ∇ = ∇ = −∫∫∫ ∫∫ ∫∫∫
Gi iw
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(n k

Div(k*grad(phi)) + q = 0 

G 
The boundary flow ) is represented in FlexPDE by the Natural 
boundary condition,  

ϕ∇i

 
Natural(phi) = <boundary flux> 

 
The simplest form of the natural boundary condition is the insulating or  
“no flow“ boundary,  
 

Natural(phi) = 0. 
 
 
Electrostatic Fields in 2D 
 
Let us as a first example construct the electrostatic field equation for an 
irregularly shaped block of high-dielectric material suspended in a low-
dielectric material between two charged plates. 
 
First we must present a title: 

title 
  'Electrostatic Potential' 

 
Next, we must name the variables in our problem: 

variables 
  V 

 
We will need the value of the permittivity: 

definitions 
  eps = 1 

 
The equation is as presented above, using the div and grad operators 
in place of ∇i  and ∇ :  

equations 
  div(eps*grad(V)) = 0   

  The domain will consist of two regions; the bounding box containing the 
entire space of the problem, with charged plates top and bottom: If we integrate the divergence term by parts (or equivalently, apply the 

divergence theorem), we get   boundaries 
  region 1 (1.2)      
    start (0,0) 
    value(V) = 0       

line to (1,0) That is, the total interior source is equal to the net flow across the outer 
boundary. 

    natural(V) = 0          
line to (1,1) 

    value(V) = 100           
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line to (0,1)  
    natural(V) = 0          monitors 

line to finish contour(V) as 'Potential' 
   
and the imbedded dielectric: 
 

  region 2 
    eps = 50 
    start (0.4,0.4) 
    line to (0.8,0.4)  
        to (0.8,0.8)   

to (0.6,0.8)  
to (0.6,0.6)  
to (0.4,0.6)  
to finish 

 
Notice that we have used the insulating form of the natural boundary 
condition on the sides of the bounding box, with specified potentials top 
(100) and bottom (0). 
 
We have specified a permittivity of 50 in the imbedded region.  (Since 
we are free to multiply through the equation by the free-space 
permittivity 0ε , we can interpret the value as relative permittivity or 
dielectric constant.) 
 
What will happen at the boundary between the dielectric and the air?  If 
we apply equation (1.2) and integrate around the dielectric body, we 
get  
 
      ( )

A
l

n k dl qdAϕ∇ = =∫ ∫∫
Giv 0

outside( )n k ( )inside n kϕ ϕ∇∇ =
G Gi i

If we perform this integration just inside the boundary of the dielectric, 
we must use k = 50, whereas just outside the boundary, we must use 
k = 1.  Yet both integrals must yield the same result.  It therefore 
follows that the interface condition at the boundary of the dielectric is 
 
     . 
 
Since the electric field vector is  and the electric displacement 

is E
G G

, we have the condition that the normal component of the 
electric displacement is continuous across the interface, as required by 
Maxwell’s equations. 

E ϕ= ∇
G

D ε=

 
We want to see what is happening while the problem is being solved, 
so we add a monitor of the potential: 
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At the end of the problem we would like to save as graphical output the 
computation mesh, a contour plot of the potential, and a vector plot of 
the electric field: 
 

plots 
  grid(x,y) 
  contour(V) as 'Potential' 
  vector(-dx(V),-dy(V)) as 'Electric Field' 

 
The problem specification is complete, so we end the script: 
  

end  
 
Putting all these sections together, we have the complete script for the 
dielectric problem: 
 
Descriptor 1.1: Dielectric.pde 

 
title 
  'Electrostatic Potential'  
variables 
  V  
definitions 
  eps = 1  
equations 
  div(eps*grad(V)) = 0   
boundaries 
  region 1 
    start (0,0) 
    value(V) = 0     line to (1,0) 
    natural(V) = 0         line to (1,1) 
    value(V) = 100         line to (0,1) 
    natural(V) = 0         line to finish  
  region 2 
    eps = 50 
    start (0.4,0.4) 
    line to (0.8,0.4) to (0.8,0.8)  

  to (0.6,0.8) to (0.6,0.6)  
  to (0.4,0.6) to finish  

monitors 
  contour(V) as 'Potential'  
plots 
  grid(x,y) 
  contour(V) as 'Potential' 
  vector(-dx(V),-dy(V)) as 'Electric Field'  
end  
 

The output plots from running this script are as follows: 
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Electrostatics in 3D 
 
We can convert this example quite simply to a three dimensional 
calculation.  The modifications that must be made are: 

• Specify cartesian3 coordinates. 
• Add an extrusion section listing the dividing surfaces. 
• Provide boundary conditions for the end faces. 
• Qualify plot commands with the cut plane in which the plot is to 

be computed. 
 
In the following descriptor, we have divided the extrusion into three 
layers.  The dielectric constant in the first and third layer are left at the 
default of k=1, while layer 2 is given a dielectric constant of 50 in the 
dielectric region only. 
 
A contour plot of the potential in the plane x=0 has been added, to 
show the resulting vertical cross section.  The plots in the z=0.15 plane 
reproduce the plots shown above for the 2D case.  

 
 
Modifications to the 2D descriptor are shown in red. 
 
Descriptor 1.2: 3D Dielectric.pde   

 
title 
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  'Electrostatic Potential' 
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coordinates 
  cartesian3 
 
variables 
  V 
definitions 
  eps = 1 
equations 
  div(eps*grad(V)) = 0  
  
extrusion 
  surface "bottom"  z=0 
  surface "dielectric_bottom" z=0.1 
 layer "dielectric" 
  surface "dielectric_top"  z=0.2 
  surface "top"  z=0.3 
 
boundaries 
 
  surface "bottom" natural(V)=0 
  surface "top" natural(V)=0 
  

   region 1 
     start (0,0) 

    value(V) = 0    line to (1,0)  
    natural(V) = 0         line to (1,1) 
    value(V) = 100         line to (0,1) 
    natural(V) = 0         line to finish 
 
  region 2 
    layer "dielectric"  eps = 50 
      start (0.4,0.4) 
      line to (0.8,0.4) to (0.8,0.8)  

to (0.6,0.8) to (0.6,0.6)  
to (0.4,0.6) to finish 

 
monitors 
  contour(V) on z=0.15 as 'Potential' 
 
plots 
  contour(V) on z=0.15 as 'Potential' 
  vector(-dx(V),-dy(V)) on z=0.15  

as 'Electric Field' 
  contour(V) on x=0.5 as 'Potential' 
 
end 

 
The following potential plot on x=0 shows the vertical cross section of 
the extruded domain.  Notice that the potential pattern is not symmetric, 
due to the influence of the extended leg of the dielectric in the y 
direction. 
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Capacitance per Unit Length in 2D Geometry1 
Alternatively, we can use the energy relation V  to get 

.   We find the energy by integrating the energy density 

 over the area of the problem.  

21
2

W C=

22 /C W V= W

 
This problem illustrates the calculation of capacitance per unit length in 
a 2D X-Y geometry extended indefinitely in the Z direction. The 
capacitance is that between a conductor enclosed in a dielectric sheath 
and a surrounding conductive enclosure. In addition to these elements, 
there is also another conductor (also with a dielectric sheath) that is 
"free floating" so that it maintains zero net charge and assumes a 
potential that is consistent with that uncharged state. 

1
2
E D
G G
i

 
Descriptor 1.3: Capacitance.pde 
  

TITLE 'Capacitance per Unit Length of 2D Geometry' 
We use the potential as the system variable, from which we can 
calculate the electric field E V= ∇

G
and displacement D E

V
ε=

G G
, where 

ε  is the local permittivity and may vary with position.  

{ 17 Nov 2000 by John Trenholme } 
 
SELECT 
  errlim 1e-4 
  thermal_colors on  
  plotintegrate off In steady state, in charge-free regions, Maxwell’s equation then 

becomes  
 
VARIABLES 
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     0 . ( ) ( Vε ε= ∇ ∇ =i

V

Q V
Q

n D Q=iv
Q

                                                     

)D E∇ =
G G
i i∇   V 

 
DEFINITIONS  
  mm = 0.001    ! meters per millimeter We impose value boundary conditions on  at the surfaces of the two 

conductors, so that we do not have to deal with regions that contain 
charge. 

  Lx = 300 * mm   ! enclosing box dimensions 
  Ly = 150 * mm    
  b = 0.7     ! fractional radius of conductor  
  ! position and size of cable at fixed potential:       x0 = 0.25 * Lx      

The metal in the floating conductor is "faked" with a fairly high   y0 = 0.5 * Ly 
  r0 = 15 * mm permittivity, which has the effect of driving the interior field and field 

energy to near zero. The imposition of (default) natural boundary 
conditions then keeps the field normal to the surface of the conductor, 
as Maxwell requires. Thus we get a good answer without having to 
solve for the charge on the floating conductor, 

  x1 = 0.9 * Lx 
  y1 = 0.3 * Ly 
  r1 = r0 
  epsr     ! relative permittivity 
  epsd = 3    ! epsr of cable dielectric 
  epsmetal = 1000 ! fake metallic conductor which would be a real pain due to its localization on the surface of the 

conductor.   eps0 = 8.854e-12   ! permittivity of free space 
  eps = epsr * eps0 

    v0 = 1      ! fixed potential of the cable 
 The capacitance can be found in two ways. If we know the charge 

Q on the conductor at fixed potentialV , we solve  
CV= /C Q V=

  ! field energy density: 
  energyDensity = dot[ eps * grad( v), grad( v)]/2 
  to get . We know because it is imposed as a 

boundary condition, and we can find from the fact that  

∫
GG

EQUATIONS 
  div[ eps * grad( v)] = 0 
 
BOUNDARIES       
  region 1  'inside'  epsr = 1 s
    start  'outer'  ( 0, 0)  value( v) = 0 where the integral is taken over a surface enclosing a volume and  is 

the charge in the volume. 
    line to (Lx,0) to (Lx,Ly) to (0,Ly) to finish 
  region 2  'diel0'  epsr = epsd 
    start  'dieb0'  (x0+r0, y0)   
    arc ( center = x0, y0) angle = 360 
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  region 3  'cond0'  epsr = 1 

 
    arc ( center = x0, y0) angle = 360 
    start  'conb0'  (x0+b*r0, y0)  value(v) = v0 



  region 4  'diel1'  epsr = epsd 
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    start  'dieb1'  ( x1+r1, y1) 
    arc ( center = x1, y1) angle = 360 
  region 5  'cond1'  epsr = epsmetal 
    start  'conb1'  ( x1+b*r1, y1) 
    arc ( center = x1, y1) angle = 360 
 
PLOTS 
  contour( v) as 'Potential' 
  contour( v) as 'Potential Near Driven Conductor' 
    zoom(x0-1.1*r0, y0-1.1*r0, 2.2*r0, 2.2*r0) 
  contour( v)  
  as 'Potential Near Floating Conductor' 
    zoom(x1-1.1*r1, y1-1.1*r1, 2.2*r1, 2.2*r1) 
  elevation( v) from ( 0,y0) to ( x0, y0) 
  as 'Potential from Wall to Driven Conductor'   
  elevation( v) from ( x0, y0) to ( x1, y1) 
  as 'Potential from Driven to Floating Conductor'  
  vector( grad( v)) as 'Field' 
  contour( energyDensity) as 'Field Energy Density' 
  contour( energyDensity)  

zoom( x1-1.2*r1, y1-1.2*r1, 2.4*r1, 2.4*r1) 
as 'Field Energy Density Near Floating Conductor' 

  elevation( energyDensity)   
 from (x1-2*r1, y1) to ( x1+2*r1, y1) 

    as 'Field Energy Density Near Floating Conductor' 
  contour( epsr) paint on "inside"  

as 'Definition of Inside' 
 
SUMMARY 
  report sintegral(normal[eps*grad(v)],'conb0', 'diel0')  

as 'Driven charge' 
  report sintegral(normal[eps*grad(v)],'outer','inside')  

as 'Outer charge' 
  report sintegral(normal[eps*grad(v)],'conb1','diel1')  

as 'Floating charge' 
  report sintegral(normal[eps*grad(v)],‘conb0','diel0')/v0  

as 'Capacitance (f/m)' 
  report integral( energyDensity, 'inside')  

as 'Energy (J/m)' 
  report 2 * integral( energyDensity, 'inside') / v0^2  

as 'Capacitance (f/m)' 
  report 2 * integral(energyDensity)/(v0* 

sintegral( normal[eps*grad(v)], 'conb0', 'diel0')) 
  as 'cap_by_energy / cap_by_charge' 
 
END 
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Chapter 2 
Magnetostatics 
 
 
From Maxwell’s equations in a steady-state form we have 

H J∇× =
G G

(2.1)      
             0B∇ =

G
i

0J∇ =
G
i

H
G             

where is the magnetic field intensity,  is the magnetic 

induction, µ  is the magnetic permeability and  is the current density. 

B Hµ=
G G

J
G

 
The conditions required by Maxwell’s equations at a material interface 
are  

 
 

(2.2)      1 2

1 2

n H n H

n B n B

× = ×

=

G GG G
G GG Gi i

H

 
It is sometimes fruitful to use the magnetic field quantities directly as 
variables in a model.  However, eq. (2.2) shows that the tangential 
components of 

G
 are continuous across an interface, while the normal 

components of are continuous.   B
G

 
The finite element method used by FlexPDE has a single value of each 
variable on an interface, and therefore requires that the quantities 
chosen for system variables must be continuous across the interface.  
In special cases, it may be possible to choose components of B

G
 or 

G
 

which satisfy this continuity requirement.  We could, for example model 
H

xB  in a problem where material interfaces are normal to x .  In the 
general case, however, meeting the continuity requirements can be 
impossible. 
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It is common in Magnetostatics to use instead of the field quantities the 
magnetic vector potential A

G
, defined as 

= ∇×
GG

(2.3)     . B A
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This definition automatically enforces .  Furthermore,  can 
be shown to be continuous everywhere in the domain, and can 
represent the conditions (2.2) correctly. 

0B∇ =
G
i A

G
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A

As a first example, we will calculate the magnetic field created by a coil, 
using 2D cylindrical (r,z) geometry.  We will apply current only in the 
azimuthal direction, so the only nonzero component of 

G
 will be the 

azimuthal component Aφ .  With only a single component normal to the 
computational plane, the gauge condition is automatically satisfied, 

since 
1 A

0A
r

φ

φ
∂

∇ = =
∂

i
G

 

 
A
G

A J

 can be derived from Ampere’s Law, and shown to be the integrated 
effect at each point of all the current loops active in the domain.  In this 
derivation, 

G
 will have components parallel to the components of 

G
, 

so that it can be determined a priori which components of A
G

 must be 
represented. 

 
In the descriptor which follows, note that we have chosen to align the 
cylindrical axis with the horizontal plot axis. FlexPDE uses a right-hand 
coordinate system, so in this case positive Jφ is outward from the plot 

page.  

 
Eq. (2.3) alone is not sufficient to uniquely define .  It must be 
supplemented by a definition of ∇

G
 to be unique.  This definition (the 

“gauge condition”) is usually taken to be 
G

 (“Coulomb gauge”), 
a definition consistent with the derivation of  from Ampere’s Law.  
Other definitions are useful in some applications.  It is not important 
what the qauge condition is; in all cases ∇×

G
, and therefore the field 

quantities, remain the same. 

A
G

Ai
0A∇ =i

A
G

A

 
Descriptor 2.1: Magnet_Coil.pde  

 
title 'AXI-SYMMETRIC MAGNETIC FIELD' 

 
coordinates 
  xcylinder(Z,R) 
  
Variables  Combining eq. (2.1) with (2.3) gives 

(( ) / )A Jµ∇× ∇× =
G G   Aphi    { azimuthal component of the vector potential } 

     (2.4)      
Definitions 

   mu = 1       { the permeability } 
  J = 0           { global source term defaults to zero } In cases with multiple materials, where µ  can take on different values, 

it is important to keep the µ  inside the curl operator, because it is the 
integration of this term by parts that gives the correct jump conditions at 
the material interface.   

  current = 10    { the source value in the coil }   
  Br = -dz(Aphi) { definitions for plots } 
  Bz = dr(r*Aphi)/r 
 
Equations 

   Curl(curl(Aphi)/mu) = J 
 Applying eq. (0.5) we have G

(2.5)     , ( )( )/
V V S

A dV HdV n HdSµ∇× ∇× = ∇× = ×∫∫∫ ∫∫∫ ∫∫
G GGw

Boundaries 
  Region 1 
    value(Aphi) = 0 { specify A=0 along axis } 

so that the Natural boundary condition defines  on external 
boundaries, and n H×

GG
is assumed continuous across internal 

boundaries, consistent with Maxwell’s equations. 

n H×
GG     start(-10,0) line to (10,0) 

    value(Aphi) = 0   { H x n = 0 on distant sphere } 
    arc(center=0,0) angle 180 finish 
  Region 2 
    J = current     { redefine source value } 
    start (-0.25,1)   
    line to (0.25,1) to (0.25,1.5)     to (-0.25,1.5) to finish 

A Magnet Coil in 2D cylindrical coordinates  
Monitors  
  contour(Bz) zoom(-2,0,4,4) as 'FLUX DENSITY B' 
  contour(Aphi) as 'Potential' 

 
Plots 
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  grid(z,r) 
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  contour(Bz)  as 'FLUX DENSITY B' 
  contour(Bz) zoom(-2,0,4,4)  as 'FLUX DENSITY B' 
  elevation(Aphi, dr(Aphi), Aphi/r, Bz)  
from (0,0) to (0,1) as 'Near Axis' 
  vector(Bz,Br) as 'FLUX DENSITY B' 
  vector(Bz,Br) zoom(-2,0,4,4) as 'FLUX DENSITY B'  
  contour(Aphi)  as 'MAGNETIC POTENTIAL' 
 
  contour(Aphi) zoom(-2,0,4,4)  as 'MAGNETIC POTENTIAL' 
  surface(Aphi)  as 'MAGNETIC POTENTIAL'   

viewpoint (-1,1,30) 
 
End  
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       arc (center=32,y0+2) to (30,y0+2)  Nonlinear Permeability in 2D 
      line to (30,20) to (15,20) to finish 

z

1µ =

max
min21 ( )zC A

µ µ= +
+ ∇

     Region 3            { The COIL } 
In the following 2D Cartesian example, a current-carrying copper coil is 
surrounded by a ferromagnetic core with an air gap. Current flows in 
the coil in the Z direction (out of the computation plane), and only the Z 
component of the magnetic vector potential is nonzero. The Coulomb 
gauge condition is again satisfied automatically.  We assume a 
symmetry plane along the X-axis, and impose 0A =  along the 
remaining sides.  The relative permeability is  in the air and the 
coil, while in the core it is given by 

µ

      S = current 
      mu = 1 
      start (15,12)  

line to (30,12) to (30,20) to (15,20) finish 
             
  Monitors 
    contour(A) 
     
  Plots 
    grid(x,y) 
    vector(dy(A),-dx(A)) as "FLUX DENSITY B" 
    vector(dy(A)/mu, -dx(A)/mu) as "MAGNETIC FIELD H" 
    contour(A)  as "Az MAGNETIC POTENTIAL"       ,  
    surface(A)  as "Az MAGNETIC POTENTIAL" 
    contour(mu0/mu) painted as "Saturation: mu0/mu" 

with parameters giving a behavior similar to transformer steel.    
  End     
  

 Descriptor 2.2: Saturation.pde 
 
  title "A MAGNETOSTATIC PROBLEM" 
 
  Select 
    errlim = 1e-4      
   
  Variables 
    A 
 
  Definitions 
    mu = 1   { default to air} 
    mu0 = 1   { for saturation plot } 
    mu_max = 5000 
    mu_min = 200 
    mucore = mu_max/(1+0.05*grad(A)**2) + mu_min  
    S = 0 
    current = 2 
    y0 = 8 
 
  Equations 
     curl(curl(A)/mu) = S 
 
  Boundaries  
    Region 1            { The IRON core } 
      mu = mucore 

       mu0 = mu_max 
       natural(A) = 0 

      start(0,0)  
   line to (40,0) 

      value(A) = 0    
  line to (40,40) to (0,40) finish  

    Region 2            { The AIR gap } 
      mu = 1 
      start (15,0)  

line to (40,0) to (40,y0) to (32,y0)  
 27  26 
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Divergence Form 
In two dimensional geometry with a single nonzero component of , 
the gauge condition 0A∇ =

G
i is automatically satisfied.  Direct 

application of eq. (2.4) is therefore well posed, and we can proceed 
without further modification. 

A
G

 
In 3D, however, direct implementation of eq. (2.4) does not impose a 
gauge condition, and is therefore ill-posed in many cases.  One way to 
address this problem is to convert the equation to divergence form 
using the vector identity 

( )A∇× ∇× = ∇
G

(2.6)     . 2( )A A∇ − ∇
G G
i

 
As long as µ  is piecewise constant we can apply (2.6) together with 

the Coulomb gauge 
G
i  to rewrite (2.4) as 

 
G 0A∇ =

(2.7)      0A J
µ

∇
∇ + = 

 

G
i

If µ  is variable, we can generalize eq (2.6) to the relation 
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(2.8)      
T

A A A
µ µ µ

     ∇× ∇ ∇
∇× = ∇ − ∇     

     

G G G
i i

i

0
T

A
µ

 ∇
∇ = 

 

G
i

F
1 1 1

1 1 1

y yz

x xz z

A A
x x y z y x

A AA AF
y y x z x y

µ µ µ µ

µ µ µ µ

   ∂ ∂∂ ∂
= + − −     ∂ ∂ ∂ ∂ ∂     

     ∂ ∂∂ ∂∂ ∂
= + − −     ∂ ∂ ∂ ∂ ∂     

∂ ∂

 
The default interior interface condition assumes component-wise 
continuity of the surface terms across the interface.   
 We assert without proof that there exists a gauge condition 

( , , )A F x y z∇ =
G

 which forces  

(2.9)     .   

The equations governing  can be stated as  
A AF ∂ ∂  1

1

1 1 1 1

z

yx x

z x

z y
AA AF

z z x y x z y

µ

µ

µ µ µ µ µ

 ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂
∂ ∂ 

    ∂ ∂∂ ∂ ∂ ∂
= + − −    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

∂ 
 

yA
z

 
 ∂ 

It is not necessary to solve these equations; we show them merely to 
indicate that F  embodies the commutation characteristics of the 
system.  The value of F  is implied by the assertion (2.9).  Clearly, 
when µ  is constant, the equations reduce to 0F∇ = , for which 

0F =  is a solution. 
 
Using the definition (2.9) we can again write the divergence form 

( )G
(2.10)     . / 0A Jµ∇ ∇ + =i
 
 
Boundary conditions 
 
In converting the equation to a divergence, we have modified the 
interface conditions.  The natural boundary condition for each 
component equation of (2.10) is now the normal component of the 
argument of the divergence: 
 

(2.11)      

( ) /
( ) /

( ) /

x x

y y

z z

Natural A n A
Natural A n A

Natural A n A

µ
µ

µ

= ∇
= ∇

= ∇

Gi
Gi
Gi
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H
Of the conditions (2.2) required by Maxwell’s equations at an interface, 
the first describes the tangential components of 

G
, which by (2.3) 

involve the normal components of A∇
G

.  Eq. (2.11) shows that these 
components scale by 1/ µ , satisfying the tangential condition on H

G
. 

The second condition is satisfied by the fact that the variables 
, , zA A A  have only a single representation on the boundary, 

requiring that their tangential derivatives, and therefore the normal 
component of 

G
, will be continuous across the interface. 

x y

B
 
In all cases it is important to keep the µ  attached to the  term to 
preserve the correct interface jump conditions. 

A∇
G

 
 
Magnetic Materials in 3D 
 
In magnetic materials, we can modify the definition of  to include 
magnetization and write  

−
G G

H
G

 (2.12)      /H B Mµ=
G

0M
 
We can still apply the divergence form in cases where , but we 
must treat the magnetization terms specially. 

≠
G

The equation becomes: 
 
G

(2.13)      0A M J
µ

∇
∇ + ∇× + = 

 

G G
i

FlexPDE does not integrate constant source terms by parts, and if  
is piecewise constant the magnetization term will disappear in equation 
analysis.  It is necessary to reformulate the magnetic term so that it can 
be incorporated into the divergence.  We have from (2.5) 

dV dS∇× = ×∫∫∫ ∫∫ n M
G GG

M
G

V S
(2.14)     . wM
Magnetic terms that  will obey  G IG G
(2.15)      n M n N× = i

Ncan be formed by defining 
I

 as the antisymmetric dyadic 
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Descriptor 2.3: 3D_Magnetron.pde 0
0

0

z y

z x

y x

M M
N M M

M M

 −
 

= − 
 − 

I  
TITLE 'Oval Magnet  '   
COORDINATES 
  CARTESIAN3 
  
SELECT Using this relation, we can write eq. (2.13) as  G I G
   alias(x) = "X(cm)" 
   alias(y) = "Y(cm)" 

(2.16)     =  0A N J
 ∇

∇ + + 
 
i

n Ni

   alias(z) = "Z(cm)" 
   nodelimit = 40000 µ
   errlim=1e-4 
 This follows because integration by parts will produce surface terms IG

, which are equivalent to the required surface terms M∇×
G

. 
VARIABLES 
  Ax,Ay  { assume Az is zero! } 
  
DEFINITIONS Expanded in Cartesian coordinates, this results in the three equations 

A ∇ G
  MuMag=1.0    { Permeabilities: } 
  MuAir=1.0 

(2.17)      

0

0

0

y
y y

z
z z

A
N J

A N J

µ

µ

=

∇ 
∇ + + 

 
 ∇

∇ + + = 
 

G
i

G
i

iN
G

N
I

x
x xN J

µ
∇ + + 

 
i   MuSST=1000 

  MuTarget=1.0 
  Mu=MuAir    { default to Air } 
   
  MzMag = 10000    { permanent magnet strength } =
  Mz = 0 
  Nx = vector(0,Mz,0) 
  Ny = vector(-Mz,0,0) 
   
  B = curl(Ax,Ay,0)  { magnetic flux density } 
  Bxx= -dz(Ay) 
  Byy= dz(Ax)   { "By" is a reserved word. } 

where the  are the rows of    Bzz= dx(Ay)-dy(Ax) 
  EQUATIONS 

In this formulation, the Natural boundary condition will be defined as 
the value of the normal component of the argument of the divergence, 
eg. 

  div(grad(Ax)/mu + Nx) = 0 
  div(grad(Ay)/mu + Ny) = 0 
 
EXTRUSION 

(2.18)     .  ( ) x
x x

Anatural A n N
µ

 ∇
= + 

GGi

z

  SURFACE "Boundary Bottom"   Z=-5 
  SURFACE "Magnet Plate Bottom"  Z=0 
    LAYER "Magnet Plate"  
  SURFACE "Magnet Plate Top"  Z=1      LAYER "Magnet" 

   SURFACE "Magnet Top"   Z=2 
  SURFACE "Boundary Top"    Z=8 As an example, we will compute the magnetic field in a generic 

magnetron.  In this case, only M is applied by the magnets, and as a 

result will be zero.  We will therefore delete from the analysis.  
The outer and inner magnets are in reversed orientation, so the applied 
M  is reversed in sign.  

 
BOUNDARIES 
  Surface "boundary bottom"  

zA zA

z

value (Ax)=0  value(Ay)=0 
  Surface "boundary top"  

value (Ax)=0 value(Ay)=0 
 
  REGION 1     { Air bounded by conductive box }     START (20,-10) 

 

      arc(center=20,0) angle=180 
      value(Ax)=0  value(Ay)=0 
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      Line TO (-20,10) 
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      arc(center=-20,0) angle=180 
      LINE TO FINISH 
 
  REGION 2   { Magnet Plate Perimeter and outer magnet }        
   LAYER "Magnet Plate"  
     Mu=MuSST 
    LAYER "Magnet" 
     Mu=MuMag 
   Mz=MzMag 

START (20,-8)  
       arc(center=20,0) angle=180 
       Line TO (-20,8)        

  arc(center=-20,0) angle=180 
  LINE TO FINISH 

 
  REGION 3     {Air  } 
    LAYER "Magnet Plate"  
      Mu=MuSST 
    START (20,-6)        

  arc(center=20,0) angle=180 
      Line TO (-20,6)         

  arc(center=-20,0) angle=180  
      LINE TO FINISH   
  REGION 4     {Inner Magnet } 
    LAYER "Magnet Plate"  

Mu=MuSST 
    LAYER "Magnet"  

Mu=MuMag 
Mz=-MzMag 

    START (20,-2)        
arc(center=20,0) angle=180 

       Line TO (-20,2)        
arc(center=-20,0) angle=180 

        LINE TO FINISH 
 
MONITORS 
  grid(x,z) on  y=0 
  grid(x,y) on  z=1.01 
  grid(x,z) on  y=1 

 
PLOTS 
  grid(x,y) on z=1.01 
  grid(y,z) on x=0 
  grid(x,z) on y=0 
  contour(Ax) on x=0 
  contour(Ay) on y=0    vector(Bxx,Byy) on z=2.01 norm    vector(Byy,Bzz) on x=0 norm 

   vector(Bxx,Bzz) on y=4 norm 
  contour(magnitude(Bxx,Byy,Bzz)) on z=2.01 LOG  
 
END   
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Chapter 3 
Waveguides 
 
 
A waveguide is any of several kinds of structure intended to direct the 
propagation of high-frequency electromagnetic energy along specific 
paths.  While the analysis of bends and terminations in such a system 
is an essentially three-dimensional problem, the propagation in long 
straight segments of the guide can be reduced to a two-dimensional 
analysis.  In this case, we assume that the guide is of uniform cross-
section in the (X,Y) plane, unvarying in the Z-dimension of the 
propagation direction.  In this configuration, we can make the 
assumption that the fields inside the guide may be represented as a 
sinusoidal oscillation in time and space, and write 
 

 (3.1)      
( , , , ) ( , ) exp( )

( , , , ) ( , ) exp( )

E x y z t x y i t i z

H x y z t x y i t i z

ω γ

ω γ

= −

= −

GG
GG

E
H

 
 

  
It is easy to see that these expressions describe a traveling wave, 
since the imaginary exponential generates sines and cosines, and the 
value of the exponential will be the same wherever z tγ .  A purely 
real γ  implies an unattenuated propagating mode with wavelength 

2 /λ π γ=  along the z  direction. 

 
 

ω= 
 
 
 

  
We start from the time-dependent form of Maxwell’s equations G GG G G

 
 
 
 
 
 (3.2)      

( )

( )

0

D EH J J
t t

B H

B HE
t t

D E

ε

µ

µ

ε ρ

∂ ∂
∇× = + = +

∂ ∂
∇ = ∇ =

∂ ∂
∇× = − = −

∂ ∂
∇ = ∇ =

G G
i i

G GG

G G
i i

0J

 
 
 
 
 

  
 Assume then that  and , and apply (3.1): =

G
0ρ =
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(3.3)           
i

i

ωε

ωµ

∇× =

∇× = −

G G

G G
H E
E H

( )
( )

0

0

µ

ε

∇ =

∇ =

G
i
G

i

H

E

2

2

ω µ
ε

ω ε
µ

∇×
∇× =  

 
 ∇×

∇× =  
 

G G

H H

E E

1 1 1x y z ix y
γ∂ ∂

∇ = + −
∂ ∂

G

G

 
Taking the curl of each curl equation in (3.3) and substituting gives 

 
G G

(3.4)     . 

In view of (3.1), we can write 
G G

(3.5)     , 

1T z iγ= ∇ −

T∇

z zE

( )

( )

2 2

2 2

z z
x

z z
y

i
y x

i
x y

ω µε γ ωµ γ

ω µε γ ωµ γ

 ∂ ∂
− = − + ∂ ∂ 

 ∂ ∂
− = − ∂ ∂ 

H EE

H EE

with  denoting the operator in the transverse plane. 
 
Homogeneous Waveguides 
 
In many cases, the waveguide under analysis consists of a metal 
casing, either empty or filled homogeneously with an isotropic 
dielectric.  In these cases, the analysis can be simplified. 
 
Eq. (3.3) can be expanded using (3.5) and rearranged to express the 
transverse x  and y  components in terms of the axial z  components 

 and .   H

(3.6)      

( )

( )

2 2

2 2

z z
x

z z
y

i
y x

i
x y

ω µε γ ωε γ

ω µε γ ωε γ

 ∂ ∂
− = − ∂ ∂ 

 ∂ ∂
− = − + ∂ ∂ 

E HH

E HH
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i / 2The  in the right hand side corresponds to a phase shift of π  in 
the expansion (3.1) 
 
 
Applying (3.5), the divergence equations of (3.3) become 

∂∂ HH

(3.7)      , 

yx
z

yx
z

i
x y

i
x y

γ

γ

= +
∂ ∂

∂∂
= +

∂ ∂

H

EEE

zso  the  component equations of (3.4) are 
 

(3.8)     . 
( ) ( )
( ) ( )

2 2

2 2

0

0

T T z z

T T z z

ω µε γ

ω µε γ

∇ ∇ + − =

∇ ∇ + − =

i

i

H H

E E

zE zH
 
These are eigenvalue equations in  and , and the values of 

( )2  for which solutions exist constitute the propagation 

constants of the unattenuated propagation modes that can be 
supported in the guide under analysis.  For any eigenvalue, there are 
an infinite number of combinations of , , ,ω ε µ γ  which can excite this 
mode, and the exact determination will depend on the materials and 
the driving frequency. 

2ω µε γ−

 
  
TE and TM modes 
 
In a homogeneously filled waveguide, there exist two sets of distinct 
modes. One set of modes has no magnetic field component in the 
propagation direction, and are referred to as Transverse Magnetic, or 
TM, modes.  The other set has no electric field component in the 
propagation direction, and are referred to as Transverse Electric, or TE, 
modes.  In either case, one member of (3.8) vanishes, leaving only a 
single variable and a single equation.  Correspondingly, equations (3.6) 
are simplified by the absence of one or the other field component. 
 
In the TM case, we have , and the first of (3.8) 

( )
0z =E

(3.9)      ( ) 2 2 0T T z zω µε γ∇ ∇ + − =i H H
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The boundary condition at an electrically conducting wall is , 
Through (3.6), this implies ˆ 0n ∇ =i H ,which is the Natural boundary 
condition of (3.9). 

ˆ 0n H =
G
i

0

constraints      { since Hz has only natural boundary  
       conditions, we need to constrain the answer } 
  integral(Hz) = 0 
 T z

0z =H
( ) 2 2 0T T z zω µε γ∇ ∇ + − =i E E

n̂ E× =
G

E

z

boundaries 
  region 1  
    start(0,0) 

In the TE case, we have , and the second of (3.8) 

( )
    natural(Hz) = 0      
      line to (L,0) to (L,1) to (0,1)  to (0,h+g) 
    natural(Hz) = 0 (3.10)     . 
      line to (s-g,h+g) to (s-g,h+g+tang) to (s+g,h+g+tang) 
           to (s+g,h-g-tang) to (s-g,h-g-tang)  The boundary condition at a metallic wall is , which requires 

that tangential components of 
G

 be zero in the wall.  Since  is 
always tangential to the wall, the boundary condition is the Dirichlet 
condition 0=E . 

           to (s-g,h-g) to (0,h-g) 
           to finish 

zE  
  monitors 
     contour(Hz) 
 
  plots       contour(Hz) painted 

In the following example, we compute the first few TE modes of a 
waveguide of complex cross-section. The natural boundary condition 
allows an infinite number of solutions, differing only by a constant offset 
in the eigenfunction, so we add an integral constraint to center the 
eigenfunctions around zero.  Since all the material parameters are 
contained in the eigenvalue, it is unnecessary to concern ourselves 
with their values.  Likewise, the computation of the transverse field 
components are scaled by constants, but the shapes are unaffected. 

     vector(Hx,Hy)  as "Transverse H" norm 
     vector(Ex,Ey)  as "Transverse E" norm 
 
  end  13474 
 

 
 

  
 
Descriptor 3.1  Waveguide.pde 

 
title "TE Waveguide" 
 
select 
  modes = 4    { This is the number of Eigenvalues desired. } 
 
variables 
  Hz 
 
definitions 
  L = 2 
  h = 0.5               ! half box height 
  g = 0.01              ! half-guage of wall 
  s = 0.3*L             ! septum depth 
  tang = 0.1            ! half-width of tang 
  Hx = -dx(Hz) 
  Hy = -dy(Hz) 
  Ex = Hy 
  Ey = -Hx 
  equations    div(grad(Hz)) + lambda*Hz = 0 
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Non-Homogeneous Waveguides2 
 
In many applications, a waveguide is partially or inhomogeneously filled 
with dielectric material.  In this case, pure TE and TM modes do not 
exist.  Both E  and H  exist simultaneously, and the propagation 
modes are hybrid in nature.   

z z

 
It is possible to address a simultaneous solution of equations (3.4) in a 
manner similar to (3.8).  However, care must be taken to keep the ε  
parameter inside of some of the derivatives, and problems arise with 
the simplifications implicit in (3.7).  This approach also has been 
plagued with spurious solution modes.  It is claimed that these spurious 
modes arise because the axial field model does not explicitly impose 

0B∇ =
G
i , and that the spurious modes are those for which this 

condition is violated. 
 
An alternative approach seeks to reduce the equations (3.4) to a pair of 
equations in the transverse components of the magnetic field, 

ˆ 1̂y yH =H .  In the process, the condition 01T x x +H B∇ =
G
i  is 

explicitly imposed, and it is claimed that no spurious modes arise. 
 

 
 
In the development that follows, we continue to treat µ  as a constant 
(invalidating use where magnetic materials are present), but we 
exercise more care in the treatment of ε . 
 

For notational convenience, we will denote the components of  as 
ˆ ˆ 1̂z

G
 and use subscripts to denote differentiation.  The 

first equation of (3.4) can then be expanded with (3.5) to give 

H
G

1 1x ya b c= + +H

 

(3.11)      

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

2

/ / / /

/ / / /

/ / / /

x y xy y

y x yxx

x yx x yy

b a i c a a

a b i c b b

c c i a i b c

ε ε γ ε γ ε ω µ

ε ε γ ε γ ε ω µ

ε ε γ ε γ ε ω µ

− − + =

− − + =

− − − − =

0B
 
The condition  allows us to replace 

 
 

 

2 The development given here follows that of Fernandez and Lu, “Microwave and Optical 
Waveguide Analysis”, and of Silvester and Ferrari, “Finite Elements for Electrical 
Engineers”. 

∇ =
G
i
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The integrand of the contour integrals is the value represented by the 
natural boundary condition statement in FlexPDE. 

(3.12)      x yi c a bγ = +

0rand to eliminate the third equation.  We can also define  and 

and multiply through by ε  leaving 

ε ε ε=

0µ µ= 0

 

(3.13)     
ω

 
( ) ( ) ( )
( ) ( ) ( )

2 2
0 0

0 0

/ / / /

/ / /

x r y r x y r ry y x

y r x r x y r rxx y

b a a b a a

a b a b b b
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ˆ 0n

The boundary conditions which must be satisfied at an electrically 
conducting wall are   

ˆ 0n =

× =

H
E

G
(3.16)       

i
G

0x x y y z zn n n2 2/

γ

γ

ε ε ε ε ω µ ε

ε ε ε ε µ ε

− − + + =

− − + + =
 
The first condition requires that = .  At a 

vertical wall, , and the condition becomes simply .  

Similarly, at a horizontal wall, it is .  Both are easily expressed 
as Value boundary conditions.  At an oblique wall, the condition can be 
expressed as an implicit value boundary condition for one of the 
components.  

+ +H H H
0y zn n= = 0x =H

0y

 
In vector form we can write this as  

(3.14)      −
Hi

2

( ) 2
2

0 0

T T TT T T
T T

r r r

γ ω µ ε
ε ε ε

∇ ∇ ∇ ×
∇ × + =  

 

H H H

GG G =H

E

G

  

The second condition requires that the tangential components of 
G

 
must vanish in the wall.  In particular, E is always tangential and must 

therefore be zero.  From (3.3) we can derive y .  But 
this is just the first term of the integrands in (3.15), so at a vertical wall 
we can set Natural(H )=0, and at a horizontal wall we can use 

Natural( )=0.  These are the reverse assignments from the value 
conditions above, so the two form a complementary set and completely 
specify the boundary conditions for (3.13).  Similar arguments can be 
used at a magnetic wall, resulting in a reversed assignment of value 
and natural boundary conditions.  

The equation pair (3.13) is an eigenvalue problem in .  We can no 

longer bundle the  and  terms inside the eigenvalue, because 

the  dividing  is now variable across the domain.  Given a driving 
frequency ω , we can compute the axial wave numbers γ  for which 
propagating modes exist. 

2γ
2ω γ

z

( )z xb aωε = −i E

y

xH

2γrε

 
Boundary Conditions 
 
To see what the natural boundary conditions imply, integrate the 
second order terms of (3.13) by parts: 

( )

(3.15)  

( ) ( )

( ) )

/ / /

/ / /

/ /

x r y r x y ry y xT

y r x r y rxx yT

x y x r x y r

b a a b dxdy

dl

a b b dxdy

b b dl

ε ε ε

ε ε ε

ε ε

 − − +
 

− −
 

→ − − +

∫∫

∫∫

 
Material Interfaces ( ) ( )

( ) ( ) ( )
/ /y x y r x x y rn b a n a bε ε → − − + 

 

∫v  
At a material interface, Maxwell’s equations require that the tangential 

components of E
G

 and H
G

 and the normal components of 
G

 and G
 must be continuous.   (

x

y

a

n a

+

n a  ∫v
εE

µH
 

 The tangential continuity of components  and  is 
automatically satisfied, because FlexPDE stores only a single value of 
variables at the interface.  Continuity of c=H , which is always 

x a=H y b=H

z

We have shown only the contour integrals arising from the integration, 
and suppressed the area integral correcting for varying ε .  This term 
will be correctly added by FlexPDE, and does not contribute to the 
boundary condition. 
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tangential, requires, using (3.12), 
2

.  Continuity 

of  requires . 

( ) ( )
1x y x ya b a b+ = +

zE ( ) ( )
1 2x yb a b a− = −

xH

x y

 
Now consider the integrals (3.15) to be taken over each material 
independently.  Each specifies in a general sense the “flux” of some 
quantity outward from the region.  The sum of the two integrands, 
taking into account the reversed sign of the outward normal, specifies 
the conservation of the “flux”.  In the usual case, the sum is zero, 
representing “flux” conservation.  In our case, we must specify a jump 
in the flux in order to satisfy the requirements of Maxwell’s equations. 
 
For the component equation we have, using the outward normals 
from region 1, 
integrand

      

1 2

1 2 1 2

x y x y x y x y
y x

r r r r

integrand

b a b a a b a b
n n

ε ε ε ε

+ =

   − − + +       
− − −          

             

( ) ( )

But the continuity requirements above dictate that the numerators be 
continuous, so the internal natural boundary condition becomes 
integrand integrand+ =

      

1 2

1 2

1 1
y x y x x y

r r

n b a n a b
ε ε

     − − + −           

y

( ) ( )

 
By a similar argument, the internal natural boundary condition for the 
H  component equation is 

      

1 2

1 2

1 1
x x y y x y

r r

integrand integrand

n a b n a b
ε ε

+ =

     − − + −           

r

 
Clearly, at an internal interface where ε  is continuous, the internal 
natural boundary condition reduces to zero, which is the default 
condition. 
 
In the example which follows, we consider a simple 2x1 metal box with 
dielectric material in the left half.  Note that FlexPDE will compute the 
eigenvalues with lowest magnitude, regardless of sign, while negative 

eigenvalues correspond to modes with propagation constants below 
cutoff, and are therefore not physically realizable. 
 
Descriptor 3.2 Filledguide.pde 

 
title "Filled Waveguide" 
 
select 
  modes = 8      { This is the number of Eigenvalues desired. } 
 
variables 
  hx,hy 
 
definitions 
  cm = 0.01   ! conversion from cm to meters 
  b = 1*cm   ! box height 
  L = 2*b   ! box width 
  epsr 
  epsr1=1  epsr2=1.5 
  ejump = 1/epsr2-1/epsr1 ! the boundary jump parameter 
  eps0 = 8.85e-12  
  mu0 = 4e-7*pi  
  c =  1/sqrt(mu0*eps0) ! light speed 
  k0b = 4 
  k0 = k0b/b 
  k02 = k0^2  ! k0^2=omega^2*mu0*eps0 
 
  curlh = dx(Hy)-dy(Hx) ! terms used in equations and BC’s 
  divh = dx(Hx)+dy(Hy) 
 
equations 
  dx(divh)/epsr - dy(curlh/epsr) + k02*Hx - lambda*Hx/epsr = 0 
  dx(curlh/epsr) + dy(divh)/epsr + k02*Hy - lambda*Hy/epsr = 0 
 
boundaries 
  region 1  epsr=epsr1 
    start(0,0) 
    natural(Hx) = 0  value(Hy)=0 
    line to (L,0) 
    value(Hx) = 0  value(Hy)=0  natural(Hy)=0 
    line to (L,b) 
    natural(Hx) = 0 value(Hy)=0 
    line to (0,b) 
    value(Hx) = 0  natural(Hy)=0 
    line to finish 
 
  region 2  epsr=epsr2 
    start(b,b) 
    line to (0,b) to (0,0) to (b,0) 
    natural(Hx) = normal(-ejump*divh,ejump*curlh) 
    natural(Hy) = normal(-ejump*curlh,-ejump*divh) 
    line to finish 
 
  monitors 
     contour(Hx) range=(-3,3) 
     contour(Hy) range=(-3,3) 
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  plots 
     contour(Hx) range=(-3,3) report(k0b)  

report(sqrt(abs(lambda))/k0) 
     surface(Hx) range=(-3,3) report(k0b) 

report(sqrt(abs(lambda))/k0) 
     contour(Hy) range=(-3,3) report(k0b) 

report(sqrt(abs(lambda))/k0) 
     surface(Hy) range=(-3,3) report(k0b) 

report(sqrt(abs(lambda))/k0) 
 
  summary  export 
     report(k0b) 
     report lambda 
     report(sqrt(abs(lambda))/k0) 
 
  end 
 
 

 
 

 
 

 
 

 
 
 
 

 48 



References  

Revision Log  
N. J. Cronin, “Microwave and Optical Waveguides”, London, Institute of 
Physics Publishing, 1995. 

 
Rev 1, 11/24/02 

 Corrected errors in listing of Descriptor 2.3, “3D_Magnetron.pde”. 
F. Anibal Fernandez and Yilong Lu, “Microwave and Optical 
Waveguide Analysis”, Somerset,UK,  Research Studies Press, Ltd. 
1996. 

 

 
S. R. H. Hoole, “Computer-Aided Analysis and Design of 
Electromagnetic Devices”, New York, Elsevier, 1989. 
 
Nathan Ida and Joao P.A. Bastos “Electromagnetics and Calculation of 
Fields”, New York, Springer-Verlag, 1992. 
 
J. D. Jackson, “Classical Electrodynamics”, Second Edition, New York, 
John Wiley & Sons, 1975. 
 
Jianming Jin, “The Finite Element Method in Electromagnetics”, New 
York, John Wiley & Sons, Inc, 1993. 
 
Peter P. Silvester and Ronald L. Ferrari, “Finite Elements for Electrical 
Engineers”, Third Edition, Cambridge University Press, 1996. 
 
C. T. Tai, “Generalized Vector and Dyadic Analysis”, New York, IEEE 
Press, 1992. 
 

 50  51 


	Introduction
	FlexPDE
	Finite Element Methods
	Principles
	Boundary Conditions
	Integration by Parts
	and Natural Boundary Conditions
	Useful Integral Rules

	Adaptive Mesh Refinement
	Time Integration
	Summary
	Disclaimer

	Chapter 1
	Electrostatics
	Electrostatic Fields in 2D
	Descriptor 1.1: Dielectric.pde

	Electrostatics in 3D
	Descriptor 1.2: 3D Dielectric.pde

	Capacitance per Unit Length in 2D Geometry
	
	Descriptor 1.3: Capacitance.pde



	Chapter 2
	Magnetostatics
	A Magnet Coil in 2D cylindrical coordinates
	Descriptor 2.1: Magnet_Coil.pde

	Nonlinear Permeability in 2D
	Descriptor 2.2: Saturation.pde

	�
	Divergence Form
	Boundary conditions
	Magnetic Materials in 3D
	Descriptor 2.3: 3D_Magnetron.pde


	Chapter 3
	Waveguides
	Homogeneous Waveguides
	TE and TM modes
	Descriptor 3.1  Waveguide.pde

	Non-Homogeneous Waveguides
	Boundary Conditions
	Material Interfaces
	Descriptor 3.2 Filledguide.pde


	Revision Log
	References

